51 resultados para fuel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the fuel stores that arctic-breeding waders put on before departure from the breeding grounds. During a ship-based expedition to arctic Canada, we caught waders at seven, mainly coastal sites, with-in 68°-76°N and 139°-67°W, from 28 July to 31 August 1999. More than two hundred waders of twelve species were trapped, mainly White-rumped Calidris fuscicollis, Semipalmated C. pusilla, Baird's C. bairdii and Buff-breasted Sandpipers Tryngites subruficollis. The vast majority of the birds were juveniles. Body masses and visual fat stores were low, close to the lowest values found anywhere during the non-breeding season for the different species. The relatively fattest birds were Buff-breasted Sandpipers, but they were still far from their maximum body mass on spring migration. We conclude that juvenile arctic waders depart from their natal areas with only small fuel stores, which is in concordance with a time-minimising migration strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the energy and protein balance of a Thrush Nightingale Luscinia luscinia, a small long-distance migrant, during repeated 12-hr long flights in a wind tunnel and during subsequent two-day fueling periods. From the energy budgets we estimated the power requirements for migratory flight in this 26 g bird at 1.91 Watts. This is low compared to flight cost estimates in birds of similar mass and with similar wing shape. This suggests that power requirements for migratory flight are lower than the power requirements for nonmigratory flight. From excreta production during flight, and nitrogen and energy balance during subsequent fueling, the dry protein proportion of stores was estimated to be around 10%. A net catabolism of protein during migratory flight along with that of fat may reflect a physiologically inevitable process, a means of providing extra water to counteract dehydration, a production of uric acid for anti-oxidative purposes, and adaptive changes in the size of flight muscles and digestive organs in the exercising animal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During their autumn migratory phase, thrush nightingales (Luscinia luscinia) previously starved for 2 d were allowed to refuel under three different ambient temperature conditions (-7 degrees, 7 degrees, and 22 degrees C). During the refueling period, as well as during the preceding control and starvation periods, food intake, body mass, and feces production were monitored. In addition, daily energy expenditure was measured during the refueling period. The compilation of the energy balance during the refueling period revealed an energy density of the deposited tissue of 33.6 kJ g-1. Assuming that the deposited tissue consists of fat and protein exclusively, with energy densities of 39.6 and 5.5 kJ g-1 wet mass, respectively, we estimated the deposited tissue to consist of 82% fat and 18% wet protein (6% dry protein and 12% water). Nitrogen balances during control, starvation, and refueling phases and during a period of prolonged and complete starvation indicated that 5% of the nutrient stores consisted of dry protein. Our results support recent findings that nutrient stores for migration often contain protein in addition to fat and consequently are 15%-25% less energy rich than pure fat stores. These proteins might be stored as muscle or other functional tissue and may be required to support the extra mass of the stores and/or reflect an incapacity of the metabolic machinery to catabolize far exclusively. Fuel deposition rate was positively related with ambient temperature, whereas food intake rate was unaffected by temperature. These results indicate that the rate of fuel deposition is limited by a ceiling in food intake rate; when this ceiling is reached, fuel deposition rate is negatively affected by daily energy expenditure rate. To a certain extent, the ceiling in food intake rate varies depending on feeding conditions over the previous days. These variations in food intake capacity probably reflect the building and breakdown of gut tissues and/or gut enzyme systems and might be insensible and not evolutionary adaptive. Significant energetic costs, however, are probably associated with the maintenance of gut tissues. It is therefore feasible that changes in digestive capacity are regulated and are directed at energy economization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lindstrom and Alerstam presented a model that predicts optimal departure fuel loads as a function of the rate of fuel deposition in time-minimizing migrants. The basis of the model is that the coverable distance per unit of fuel deposited, diminishes with increasing fuel load. This is an effect of the increasing flight costs associated with increasing body mass. Lindstrom and Alerstam (1992) found that birds left at lower fuel loads than their model predicted for which they considered various ecological explanations. Alternatively, we hypothesize that the difference between prediction and empirical data might be a result of extra resting metabolic and transport costs associated with an increase in fuel load during stopover. We develop a new version of the Lindstrom and Alerstam (1992) model taking fuel load associated costs during stopover into account. We fit empirical data from rufous hummingbirds Selasphorus rufus and bluethroats Luscinia svecica to this new model. Estimated fuel-load costs are discussed in relation to knowledge presently available on variations in basal metabolic costs and transport costs with body mass. We show that fuel-load costs within a reasonable range can explain the observed departure fuel loads when migrating birds are time minimizers.