69 resultados para drug induced disease


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional drug discovery pipeline for the identification and development of compounds that selectively target specific molecules to ameliorate disease remains a major focus for medical research. However, the zebrafish is increasingly providing alternative strategies for various components of this pipeline. Zebrafish and their embryos are small, easily accessible and relatively low cost, making them applicable to high-throughput, small molecule screening. Zebrafish can also be manipulated by a range of forward and reverse genetics techniques to facilitate gene discovery and functional studies. Moreover, their physiological and developmental complexity provides accurate models of human disease to underpin mechanism of action and in vivo validation studies. Finally, several of these biological characteristics make zebrafish eminently suitable for toxicity testing, including eco-toxicology. Here we review the application of zebrafish to preclinical drug development and toxicity testing, including recent advances in mutant generation, drug screening and toxicology that serve to further enhance the capabilities of this valuable model organism in drug discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5-2.5 nm. The host-guest association constant Ka was 1,639 M-1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytokine and growth factor signaling mediates essential roles in the differentiation, proliferation, survival and function of a number of cell lineages. This is achieved via specific receptors located on the surface of target cells, with ligand binding activating key intracellular signal transduction cascades to mediate the requisite cellular outcome. Effective resolution of receptor signaling is also essential, with excessive signaling having the potential for pathological consequences. The Suppressor of cytokine signaling (SOCS) family of proteins represent one important mechanism to extinguish cytokine and growth factor receptor signaling. There are 8 SOCS proteins in mammals; SOCS1-7 and the alternatively named Cytokine-inducible SH2-containing protein (CISH). SOCS1-3 and CISH are predominantly associated with the regulation of cytokine receptor signaling, while SOCS4-7 are more commonly involved in the control of Receptor tyrosine kinase (RTK) signaling. Individual SOCS proteins are typically induced by specific cytokines and growth factors, thereby generating a negative feedback loop. As a consequence of their regulatory properties, SOCS proteins have important functions in development and homeostasis, with increasing recognition of their role in disease, particularly their tumor suppressor and anti-inflammatory functions. This review provides a synthesis of our current understanding of the SOCS family, with an emphasis on their immune and hematopoietic roles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To prospectively characterise treatment persistence and predictors of treatment discontinuation in an Australian relapsing-remitting multiple sclerosis (RRMS) population. Tertiary MS treatment centres participating in the MSBase registry prospectively assessed treatment utilisation, persistence, predictors of treatment discontinuation and switch rates. Multivariable survival analyses were used to compare treatment persistence between drugs and to identify predictors of treatment discontinuation. 1113 RRMS patients were studied. Patients persisted on their first disease-modifying therapy (DMT) for a median of 2.5 years. Treatment persistence on GA was shorter than on all IFNβ products (p<0.03). Younger age at treatment initiation and higher EDSS were predictive of DMT discontinuation. Patients persisted on subsequent DMTs, for 2.3 years. Patients receiving natalizumab (NAT) as a subsequent DMT persisted longer on treatment than those on IFNβ or GA (p<0.000). The primary reason for treatment discontinuation for any drug class was poor tolerability. Annualised switch or cessation rates were 9.5–12.5% for individual IFNβ products, 11.6% for GA and 4.4% for NAT. This multicentre MS cohort study is the first to directly compare treatment persistence on IFNβ and GA to NAT. We report that treatment persistence in our Australian RRMS population is short, although patients receiving IFNβ as a first DMT persisted longer on treatment than those on GA. Additionally, patients receiving NAT as a subsequent DMT were more likely to persist on treatment than those switched to IFNβ or GA. EDSS and age at DMT initiation were predictive of DMT discontinuation. Treatment intolerance was the principal reason for treatment cessation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa), from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo) lactoferrin (∼78-80 kDa), retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01) of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis) and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hypoglycemia-induced fall is common in older persons with diabetes. The etiology of falls in this population is usually multifactorial, and includes microvascular and macrovascular complications and age-related comorbidities, with hypoglycemia being one of the major precipitating causes. In this review, we systematically searched the literature that was available up to March 31, 2014 from MEDLINE/PubMed, Embase, and Google Scholar using the following terms: hypoglycemia; insulin; diabetic complications; and falls in elderly. Hypoglycemia, defined as blood glucose <4.0 mmol/L (70 mg/dL) requiring external assistance, occurs in one-third of elderly diabetics on glucose-lowering therapies. It represents a major barrier to the treatment of diabetes, particularly in the elderly population. Patients who experience hypoglycemia are at a high risk for adverse outcomes, including falls leading to bone fracture, seizures, cognitive dysfunction, and prolonged hospital stays. An increase in mortality has been observed in patients who experience any one of these events. Paradoxically, rational insulin therapy, dosed according to a patient's clinical status and the results of home blood glucose monitoring, so as to achieve and maintain recommended glycemic goals, can be an effective method for the prevention of hypoglycemia and falls in the elderly. Contingencies, such as clinician-directed hypoglycemia treatment protocols that guide the immediate treatment of hypoglycemia, help to limit both the duration and severity of the event. Older diabetic patients with or without underlying renal insufficiency or other severe illnesses represent groups that are at high risk for hypoglycemia-induced falls and, therefore, require lower insulin dosages. In this review, the risk factors of falls associated with hypoglycemia in elderly diabetics were highlighted and management plans were suggested. A target hemoglobin A1c level between 7% and 8% seems to be more appropriate for this population. In addition, the first-choice drugs should have good safety profiles and have the lowest probability of causing hypoglycemia - such as metformin (in the absence of significant renal impairment) and incretin enhancers - while other therapies that may cause more frequent hypoglycemia should be avoided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic stresses associated with disease, ageing, and exercise increase the levels of reactive oxygen species (ROS) in skeletal muscle. These ROS have been linked mechanistically to adaptations in skeletal muscle that can be favourable (i.e. in response to exercise) or detrimental (i.e. in response to disease). The magnitude, duration (acute versus chronic), and cellular origin of the ROS are important underlying factors in determining the metabolic perturbations associated with the ROS produced in skeletal muscle. In particular, insulin resistance has been linked to excess ROS production in skeletal muscle mitochondria. A chronic excess of mitochondrial ROS can impair normal insulin signalling pathways and glucose disposal in skeletal muscle. In contrast, ROS produced in skeletal muscle in response to exercise has been linked to beneficial metabolic adaptations including mitochondrial biogenesis and muscle hypertrophy. Moreover, unlike insulin resistance, exercise-induced ROS appears to be primarily of non-mitochondrial origin. The present review summarizes the diverse ROS-targeted metabolic outcomes associated with insulin resistance versus exercise in skeletal muscle, thus, presenting two contrasting perspectives of pathologically harmful versus physiologically beneficial ROS. Here, we discuss the key sites of ROS production during exercise and the effect of ROS in skeletal muscle of people with type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methylmercury (MeHg) has been associated with increased risk for cardiovascular disease in some but not all epidemiology studies. These inconsistent results may stem from the fact that exposure typically occurs in the context of fish consumption, which is also associated with cardioprotective factors such as omega-3 fatty acids. Mechanistic information may help to understand whether MeHg represents a risk to cardiovascular health. MeHg is a pro-oxidant that inactivates protein sulfhydryls. These biochemical effects may diminish critical antioxidant defense mechanism(s) involved in protecting against atherosclerosis. One such defense mechanism is paraoxonase-1 (PON1), an enzyme present on high-density lipoproteins and that prevents the oxidation of blood lipids and their deposition in vascular endothelium. PON1 is potentially useful as a clinical biomarker of cardiovascular risk, as well as a critical enzyme in the detoxification of certain organophosphate oxons. MeHg and other metals are known to inhibit PON1 activity in vitro. MeHg is associated with lowered serum PON1 activity in a fish-eating population. The implications of lowering PON1 are evaluated by predicting the shift in PON1 population distribution induced by various doses of MeHg. An MeHg dose of 0.3 μg/kg/d is estimated to decrease the population average PON1 level by 6.1% and to increase population risk of acute cardiovascular events by 9.7%. This evaluation provides a plausible mechanism for MeHg-induced cardiovascular risk and suggests means to quantify the risk. This case study exemplifies the use of upstream disease biomarkers to evaluate the additive effect of chemical toxicity with background disease processes in assessing human risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Granulocyte-colony stimulating factor (G-CSF) has been demonstrated to enhance skeletal muscle recovery following injury and increases muscle function in the context of neuromuscular disease in rodent models. However, understanding of the underlying mechanisms used by G-CSF to mediate these functions remains poor. G-CSF acts on responsive cells through binding to a specific membrane spanning receptor, G-CSFR. Recently identified, the G-CSFR is expressed in myoblasts, myotubes and mature skeletal muscle tissue. Therefore, elucidating the actions of G-CSF in skeletal muscle represents an important prerequisite to consider G-CSF as a therapeutic agent to treat skeletal muscle. Here we show for the first time that treatment with moderate doses (4 and 40ng/ml) of G-CSF attenuates the effects of dexamethasone in reducing protein synthesis in C2C12 myotubes. However, a higher dose (100ng/ml) of G-CSF exacerbates the dexamethasone-induced reduction in protein synthesis. In contrast, G-CSF had no effect on basal or dexamethasone-induced protein degradation, nor did G-CSF influence the phosphorylation of Akt, STAT3, Erk1/2, Src, Lyn and Erk5 in C2C12 myotubes. In conclusion, physiologically relevant doses of G-CSF may attenuate reduced skeletal muscle protein synthesis during catabolic conditions, thereby improving recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutaredoxin1 (GRX1) is a glutathione (GSH)-dependent thiol oxidoreductase. The GRX1/GSH system is important for the protection of proteins from oxidative damage and in the regulation of protein function. Previously we demonstrated that GRX1/GSH regulates the activity of the essential copper-transporting P1B-Type ATPases (ATP7A, ATP7B) in a copper-responsive manner. It has also been established that GRX1 binds copper with high affinity and regulates the redox chemistry of the metallochaperone ATOX1, which delivers copper to the copper-ATPases. In this study, to further define the role of GRX1 in copper homeostasis, we examined the effects of manipulating GRX1 expression on copper homeostasis and cell survival in mouse embryonic fibroblasts and in human neuroblastoma cells (SH-SY5Y). GRX1 knockout led to cellular copper retention (especially when cultured with elevated copper) and reduced copper tolerance, while in GRX1-overexpressing cells challenged with elevated copper, there was a reduction in both intracellular copper levels and copper-induced reactive oxygen species, coupled with enhanced cell proliferation. These effects are consistent with a role for GRX1 in regulating ATP7A-mediated copper export, and further support a new function for GRX1 in neuronal copper homeostasis and in protection from copper-mediated oxidative injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disorder, involving psychiatric, cognitive and motor symptoms, caused by a CAG-repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. Oxidative stress and excitotoxicity have previously been implicated in the pathogenesis of HD. We hypothesized that N-acetylcysteine (NAC) may reduce both excitotoxicity and oxidative stress through its actions on glutamate reuptake and antioxidant capacity. The R6/1 transgenic mouse model of HD was used to investigate the effects of NAC on HD pathology. It was found that chronic NAC administration delayed the onset and progression of motor deficits in R6/1 mice, while having an antidepressant-like effect on both R6/1 and wild-type mice. A deficit in the astrocytic glutamate transporter protein, GLT-1, was found in R6/1 mice. However, this deficit was not ameliorated by NAC, implying that the therapeutic effect of NAC is not due to rescue of the GLT-1 deficit and associated glutamate-induced excitotoxicity. Assessment of mitochondrial function in the striatum and cortex revealed that R6/1 mice show reduced mitochondrial respiratory capacity specific to the striatum. This deficit was rescued by chronic treatment with NAC. There was a selective increase in markers of oxidative damage in mitochondria, which was rescued by NAC. In conclusion, NAC is able to delay the onset of motor deficits in the R6/1 model of Huntington's disease and it may do so by ameliorating mitochondrial dysfunction. Thus, NAC shows promise as a potential therapeutic agent in HD. Furthermore, our data suggest that NAC may also have broader antidepressant efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly pathogenic avian influenza virus infection is associated with severe mortality in both humans and poultry. The mechanisms of disease pathogenesis and immunity are poorly understood although recent evidence suggests that cytokine/chemokine dysregulation contributes to disease severity following H5N1 infection. Influenza A virus infection causes a rapid influx of inflammatory cells, resulting in increased reactive oxygen species production, cytokine expression, and acute lung injury. Proinflammatory stimuli are known to induce intracellular reactive oxygen species by activating NADPH oxidase activity. We therefore hypothesized that inhibition of this activity would restore host cytokine homeostasis following avian influenza virus infection. A panel of airway epithelial and immune cells from mammalian and avian species were infected with A/Puerto Rico/8/1934 H1N1 virus, low-pathogenicity avian influenza H5N3 virus (A/duck/Victoria/0305-2/2012), highly pathogenic avian influenza H5N1 virus (A/chicken/Vietnam/0008/2004), or low-pathogenicity avian influenza H7N9 virus (A/Anhui/1/2013). Quantitative real-time reverse transcriptase PCR showed that H5N1 and H7N9 viruses significantly stimulated cytokine (interleukin-6, beta interferon, CXCL10, and CCL5) production. Among the influenza-induced cytokines, CCL5 was identified as a potential marker for overactive immunity. Apocynin, a Nox2 inhibitor, inhibited influenza-induced cytokines and reactive oxygen species production, although viral replication was not significantly altered in vitro. Interestingly, apocynin treatment significantly increased influenza virus-induced mRNA and protein expression of SOCS1 and SOCS3, enhancing negative regulation of cytokine signaling. These findings suggest that apocynin or its derivatives (targeting host responses) could be used in combination with antiviral strategies (targeting viruses) as therapeutic agents to ameliorate disease severity in susceptible species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Postural instability is a major source of disability in idiopathic Parkinson's disease (IPD). Deep brain stimulation of the globus pallidus internus (GPI-DBS) improves clinician-rated balance control but there have been few quantitative studies of its interactive effects with levodopa (L-DOPA). The purpose of this study was to compare the short-term and interactive effects of GPI-DBS and L-DOPA on objective measures of postural stability in patients with longstanding IPD. METHODS: Static and dynamic posturography during a whole-body leaning task were performed in 10 IPD patients with bilateral GPI stimulators under the following conditions: untreated (OFF); L-DOPA alone; DBS alone; DBS+L-DOPA, and in 9 healthy Control subjects. Clinical status was assessed using the UPDRS and AIMS Dyskinesia Scale. RESULTS: Static sway was greater in IPD patients in the OFF state compared to the Control subjects and was further increased by L-DOPA and reduced by GPI-DBS. In the dynamic task, L-DOPA had a greater effect than GPI-DBS on improving Start Time, but reduced the spatial accuracy and directional control of the task. When the two therapies were combined, GPI-DBS prevented the L-DOPA induced increase in static sway and improved the accuracy of the dynamic task. CONCLUSION: The findings demonstrate GPI-DBS and L-DOPA have differential effects on temporal and spatial aspects of postural control in IPD and that GPI-DBS counteracts some of the adverse effects of L-DOPA. Further studies on larger numbers of patients with GPI stimulators are required to confirm these findings and to clarify the contribution of dyskinesias to impaired dynamic postural control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The Millennium Declaration in 2000 brought special global attention to HIV, tuberculosis, and malaria through the formulation of Millennium Development Goal (MDG) 6. The Global Burden of Disease 2013 study provides a consistent and comprehensive approach to disease estimation for between 1990 and 2013, and an opportunity to assess whether accelerated progress has occured since the Millennium Declaration. METHODS: To estimate incidence and mortality for HIV, we used the UNAIDS Spectrum model appropriately modified based on a systematic review of available studies of mortality with and without antiretroviral therapy (ART). For concentrated epidemics, we calibrated Spectrum models to fit vital registration data corrected for misclassification of HIV deaths. In generalised epidemics, we minimised a loss function to select epidemic curves most consistent with prevalence data and demographic data for all-cause mortality. We analysed counterfactual scenarios for HIV to assess years of life saved through prevention of mother-to-child transmission (PMTCT) and ART. For tuberculosis, we analysed vital registration and verbal autopsy data to estimate mortality using cause of death ensemble modelling. We analysed data for corrected case-notifications, expert opinions on the case-detection rate, prevalence surveys, and estimated cause-specific mortality using Bayesian meta-regression to generate consistent trends in all parameters. We analysed malaria mortality and incidence using an updated cause of death database, a systematic analysis of verbal autopsy validation studies for malaria, and recent studies (2010-13) of incidence, drug resistance, and coverage of insecticide-treated bednets. FINDINGS: Globally in 2013, there were 1·8 million new HIV infections (95% uncertainty interval 1·7 million to 2·1 million), 29·2 million prevalent HIV cases (28·1 to 31·7), and 1·3 million HIV deaths (1·3 to 1·5). At the peak of the epidemic in 2005, HIV caused 1·7 million deaths (1·6 million to 1·9 million). Concentrated epidemics in Latin America and eastern Europe are substantially smaller than previously estimated. Through interventions including PMTCT and ART, 19·1 million life-years (16·6 million to 21·5 million) have been saved, 70·3% (65·4 to 76·1) in developing countries. From 2000 to 2011, the ratio of development assistance for health for HIV to years of life saved through intervention was US$4498 in developing countries. Including in HIV-positive individuals, all-form tuberculosis incidence was 7·5 million (7·4 million to 7·7 million), prevalence was 11·9 million (11·6 million to 12·2 million), and number of deaths was 1·4 million (1·3 million to 1·5 million) in 2013. In the same year and in only individuals who were HIV-negative, all-form tuberculosis incidence was 7·1 million (6·9 million to 7·3 million), prevalence was 11·2 million (10·8 million to 11·6 million), and number of deaths was 1·3 million (1·2 million to 1·4 million). Annualised rates of change (ARC) for incidence, prevalence, and death became negative after 2000. Tuberculosis in HIV-negative individuals disproportionately occurs in men and boys (versus women and girls); 64·0% of cases (63·6 to 64·3) and 64·7% of deaths (60·8 to 70·3). Globally, malaria cases and deaths grew rapidly from 1990 reaching a peak of 232 million cases (143 million to 387 million) in 2003 and 1·2 million deaths (1·1 million to 1·4 million) in 2004. Since 2004, child deaths from malaria in sub-Saharan Africa have decreased by 31·5% (15·7 to 44·1). Outside of Africa, malaria mortality has been steadily decreasing since 1990. INTERPRETATION: Our estimates of the number of people living with HIV are 18·7% smaller than UNAIDS's estimates in 2012. The number of people living with malaria is larger than estimated by WHO. The number of people living with HIV, tuberculosis, or malaria have all decreased since 2000. At the global level, upward trends for malaria and HIV deaths have been reversed and declines in tuberculosis deaths have accelerated. 101 countries (74 of which are developing) still have increasing HIV incidence. Substantial progress since the Millennium Declaration is an encouraging sign of the effect of global action. FUNDING: Bill & Melinda Gates Foundation.

Relevância:

30.00% 30.00%

Publicador: