50 resultados para crayfish


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify the gene responsible for the production of a β-1,3-glucanase (laminarinase) within crustacea, a glycosyl hydrolase family 16 (GHF16) gene was sequenced from the midgut glands of the gecarcinid land crab, Gecarcoidea natalis and the freshwater crayfish, Cherax destructor. An open reading frame of 1098bp for G. natalis and 1095bp for C. destructor was sequenced from cDNA. For G. natalis and C. destructor respectively, this encoded putative proteins of 365 and 364 amino acids with molecular masses of 41.4 and 41.5kDa. mRNA for an identical GHF16 protein was also expressed in the haemolymph of C. destructor. These putative proteins contained binding and catalytic domains that are characteristic of a β-1,3-glucanase from glycosyl hydrolase family 16. The amino acid sequences of two short 8-9 amino acid residue peptides from a previously purified β-1,3-glucanase from G. natalis matched exactly that of the putative protein sequence. This plus the molecular masses of the putative proteins matching that of the purified proteins strongly suggests that the sequences obtained encode for a catalytically active β-1,3-glucanase. A glycosyl hydrolase family 16 cDNA was also partially sequenced from the midgut glands of other amphibious (Mictyrisplatycheles and Paragrapsus laevis) and terrestrial decapod species (Coenobita rugosus, Coenobita perlatus, Coenobita brevimanus and Birgus latro) to confirm that the gene is widely expressed within this group. There are three possible hypothesised functions and thus evolutionary routes for the β-1,3-glucanase: 1) a digestive enzyme which hydrolyses β-1,3-glucans, 2) an enzyme which cleaves β-1,3-glycosidic bonds within cell walls to release cell contents or 3) an immune protein which can hydrolyse the cell walls of potentially pathogenic micro-organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Size-selective harvest of fish and crustacean populations has reduced stock numbers, and led to reduced growth rates and earlier maturation. In contrast to the focus on size-selective effects of harvest, here, we test the hypothesis that fishing may select on life-history traits (here, growth rate) via behaviour, even in the absence of size selection. If true, then traditional size-limits used to protect segments of a population cannot fully protect fast growers, because at any given size, fast-growers will be more vulnerable owing to bolder behaviour. We repeatedly measured individual behaviour and growth of 86 crayfish and found that fast-growing individuals were consistently bold and voracious over time, and were subsequently more likely to be harvested in single- and group-trapping trials. In addition, there was some indication that sex had independent effects on behaviour and trappability, whereby females tended to be less active, shyer, slower-growing and less likely to be harvested, but not all these effects were significant. This study represents, to our knowledge, the first across-individual support for this hypothesis, and suggests that behaviour is an important mechanism for fishing selectivity that could potentially lead to evolution of reduced intrinsic growth rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intermittent stream systems create a mosaic of aquatic habitat that changes through time, potentially challenging freshwater invertebrate dispersal. Invertebrates inhabiting these mosaics may show stronger dispersal capacity than those in perennial stream systems. To relate different combinations of dispersal and drought survival strategies to species persistence, we compared the distribution and dispersal potential of six invertebrate species across all streams in a montane landscape where drying is becoming increasingly frequent and prolonged. Invertebrates were collected from seventeen streams in the Victoria Range, Grampians National Park, Victoria, Australia. The species analysed were as follows: the caddisflies Lectrides varians Moseley (Leptoceridae) and Agapetus sp. (Glossosomatidae); the mayflies Nousia AV1 and Koorrnonga AV3 (Leptophlebiidae); the water penny beetle Sclerocyphon sp. (Psephenidae); and a freshwater crayfish Geocharax sp. nov. 1 (Parastacidae). These species were widespread in the streams and varied in their dispersal and drought survival strategies. The distribution of each species across the Victoria Range, their drought responses and within-stream habitat associations were determined. Hypotheses of the dispersal capacity and population structure for each species were developed and compared to four models of gene flow: Death Valley Model (DVM), Stream Hierarchy Model (SHM), Headwater Model (HM) or panmixia (PAN). Molecular genetic methods were then used to infer population structure and dispersal capacity for each species. The large caddisfly Lectrides resisted drought through aestivation and was panmictic (PAN) indicating strong dispersal capacity. Conversely, the small caddisfly Agapetus relied on perennially flowing reaches and gene flow was limited to short distances among stream headwaters, resembling the HM. Both mayflies depended on perennial surface water during drying and showed evidence of gene flow among streams: Koorrnonga mainly dispersed along stream channels within catchments, resembling the SHM, whereas Nousia appeared to disperse across land by adult flight. Sclerocyphon relied on perennial water to survive drying and showed an unusual pattern of genetic structure that indicated limited dispersal but did not resemble any of the models. Geocharax survived drought through aestivation or residence in perennial pools, and high levels of genetic structure indicated limited dispersal among streams, resembling the DVM. Despite good knowledge of species' drought survival strategies, the population structure of four species differed from predictions. Dispersal capacity varied strongly among species; most species were poor dispersers and only one species showed panmixia. Therefore, intermittent stream species may not necessarily be better dispersers than those in perennial streams. Species showing strong drought resistance strategies differed in dispersal capacity. Knowledge of life-history characteristics, distribution and refuge use does not necessarily enable successful prediction of invertebrate dispersal pathways or population structure. Dispersal among intermittent streams may be restricted to relatively short distances (km) for most invertebrate species. Thus, frequent drought refuges (perennial water) that provide strong connectivity to subpopulations through stream flow (hydrological dispersal), or continuous terrestrial vegetation (flight dispersal), will be critical to maintain genetic diversity, adaptability and population persistence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian freshwater crayfish species, Cherax quadricarinatus Von Martens, 1868, is an important commercial and invasive species that is also being increasingly used as a model organism to address important and interesting questions in crustacean biology. Through deep sequencing of the transcriptome of C. quadricarinatus from the hepatopancreas and four other tissues, we examine the evolution of endogenously transcribed cellulase genes and provide new insights into controversial issues regarding the nutritional biology of crayfishes. A cluster assembly approach yielded one of the highest quality transcriptome assemblies for a decapod crustacean to date. A total of 206,341,872 reads with an average read length of 80 bp were generated from sequencing the transcriptomes from the heart, kidney, hepatopancreas, nerve, and testis tissues. The assembled transcriptome contains a total of 44,525 transcripts. A total of 65 transcripts coding for carbohydrate-active enzymes (CAZy) were identified based on hidden Markov model (HMM), and a majority of them display high relative transcript abundance in the hepatopancreas tissue, supporting their role in nutrient digestion. Comprehensive phylogenetic analyses of proteins belonging to two main glycosyl hydrolase families (GH9 and GH5) suggest shared ancestry of C. quadricarinatus cellulases with other characterized crustacean cellulases. Our study significantly expands the number of known crustacean-derived CAZy-coding transcripts. More importantly, the surprising level of evolutionary diversification of these proteins in C. quadricarinatus suggests that these enzymes may have been of critical importance in the adaptation of freshwater crayfishes to new plant-based food sources as part of their successful invasion of freshwater systems from marine ancestors.