54 resultados para coastal management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the reasons and cues for migration is crucial for developing effective conservation and management strategies of diadromous fishes. Spawning and movement patterns of the threatened diadromous Australian grayling (Prototroctes maraena) were investigated in the Bunyip River, Victoria, using drift sampling (2008–2011) and acoustic telemetry (2009–2010) during the autumn–winter spawning period of each year. Fifty-five adult fish (2009: n = 21; 2010: n = 34) were tagged and released in February ~15–30 km upstream of the Bunyip River estuary. Thirteen fish (2009: n = 7; 2010: n = 6) undertook rapid downstream migrations from March to April to reaches immediately upstream of the estuary. Drifting eggs were detected at multiple sites between April and July; however, the majority (78.8%) were collected in the lower reaches within ~0.5 km of the estuary in early–mid-May. Tagged adult fish arrived in this area 1–4 weeks before eggs were detected and usually moved back upstream within 2 weeks following the peak egg abundance. Downstream migration and peak egg abundance were associated with increased river flows. Although the proportion of fish that undertook migrations was low, low rates of tag retention in this species likely account for the failure to detect migration by many of the tagged individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research found that weeds provided valuable habitat for some wildlife, but that current weed management does not adequately account for such interactions. By retaining weed structure during weed management this study showed that wildlife could remain unaffected by considered weed management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban expansion brings profound impacts and challenges to many ecosystems, including wetlands. Unauthorised public access to wetland sanctuaries can lead to a number of management problems, such as increasing disturbance to migratory shorebirds. We investigate unauthorised human use of a coastal urban wetland located in Melbourne, Australia, and use current results to predict future patterns of visitation under different management and urban development scenarios. Despite being officially closed to the public, 20.8% of the 574 ha wetland experienced human intrusions during the sampling period. These were most frequent in the section which directly abuts residential development where over 50% of the wetland experienced intrusions. The most frequently observed activities were walking (4.8 ± 4.9 intrusions per observation day), dog walking (8.5 ± 4.5), cycling (3.0 ± 1.8) and motorised trail bike riding (2.5 ± 1.0). There were significant negative relationships between the occurrence of intrusions and distance from the wetland boundary and access points. Walkers and dog walkers were likely to intrude more deeply into the wetlands than other users. We predict that once residential development is completed around the entire perimeter of the wetland that 48% of the total area will be subject to intrusions. This will increase to 58.8% if internal management tracks are opened for public use. We recommend that the current access policy is maintained, and compliance is enhanced through education and additional physical barriers. © 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Management strategies to protect endangered species primarily focus on safeguarding habitats currently perceived as important (due to high-density use, rarity or contribution to the biological cycle), rather than sites of future ecological importance. This discrepancy is particularly relevant for species inhabiting beaches and coastal areas that may be lost due to sea-level rise over the next 100 years through climate change. Here, we modelled four sea-level rise (SLR) scenarios (0.2, 0.6, 0.9 and 1.3 m) to determine the future vulnerability and viability of nesting habitat (six distinct nesting beaches totalling about 6 km in length) at a key loggerhead sea turtle (Caretta caretta) rookery (Zakynthos, Greece) in the Mediterranean. For each of the six nesting beaches, we identified (1) the area of beach currently used by turtles, (2) the area of the beach anticipated to become inundated under each SLR, (3) the area of beach anticipated to become unsuitable for nesting under each SLR, (4) the potential for habitat loss under the examined SLR, and (5) the extent to which the beaches may shift in relation to natural (i.e. cliffs) and artificial (i.e. beach front development) physical barriers. Even under the most conservative 0.2 m SLR scenario, about 38% (range: 31–48%) total nesting beach area would be lost, while an average 13% (range: 7–17%) current nesting beach area would be lost. About 4 km length of nesting habitat (representing 85% of nesting activity) would be lost under the 0.9 m scenario, because cliffs prevent landward beach migration. In comparison, while the other 2 km of beach (representing 15% nests) is also at high risk, it has the capacity for landward migration, because of an adjoining sand-dune system. Therefore, managers should strengthen actions on this latter area, as a climatically critical safeguard for future sea turtle nesting activity, in parallel to regularly assessing and revising measures on the current high-use nesting habitats of this important Mediterranean loggerhead population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context In peri-urban environments, high availability of anthropogenic resources may result in relatively high abundances of some species, with potentially negative implications for other native biota. Effective management of such impacts requires understanding of the spatial ecology of problem species. However, home range and habitat use have not been described for the little raven (Corvus mellori), a superabundant native predator that occurs in urban and natural habitats, including those where threatened shorebirds breed. Aims The aim of this study was to provide basic information on little raven home range, habitat use and movements in a coastal peri-urban landscape. Methods Between October 2011 and January 2012 we radio-tracked 20 little ravens captured in a coastal wetland (near Melbourne, Australia). Key results Little ravens were highly mobile, moving up to 9.9km in an hour (median≤2km), and had large ranges: Minimum Convex Polygons were 1664-9989ha (median≤3362ha). Although most birds used both anthropogenic and natural habitats, some birds strongly selected for coastal wetland habitat. Birds used multiple roosts during the study period, most of which occurred in grassland (58.7%) or urban (22.3%) areas. Movement of up to 8.3km (median≤2.2km) between roosts during the night was also detected. Conclusions Ravens were highly mobile and used large home ranges and a variety of habitats, with habitat preferences varying between birds. Implications Considering the large home ranges and inter-individual variation in habitat preferences of little raven populations, localised management to reduce their impacts on breeding shorebirds is unlikely to be successful. Journal compilation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estuaries are a transition zone for fresh and saline water and sediments, providing a range of ecosystem services for the local population, infrastructure and industries located in their environs. They are also governance transition zones where jurisdictions often overlap and focused attention is often lacking. As Australia’s population continues to expand, particularly in the south, estuaries are increasingly becoming popular locations for settlement due to their picturesque surrounds and accessibility for water-based activities. This results in expanding human and industry activities and pressures along estuaries and adjacent coastal settings impacting ecosystem service delivery. The absence of dedicated national and state estuary legislation in addition to decades of poor land and waterway management decisions paints a ‘doom and gloom’ picture for temperate southern Australian estuaries. Against this backdrop, there are number of estuary ‘bright spots’ where natural resource management bodies in strong partnership with local actors are moving forward in overcoming challenges to estuary conservation. Using case studies, this paper describes the key elements for effective estuary management that can lead to improved estuary health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the links between external variables such as habitat and interactions with conspecifics and animal space-use is fundamental to developing effective management measures. In the marine realm, automated acoustic tracking has become a widely used method for monitoring the movement of free-ranging animals, yet researchers generally lack robust methods for analysing the resulting spatial-usage data. In this study, acoustic tracking data from male and female broadnose sevengill sharks Notorynchus cepedianus, collected in a system of coastal embayments in southeast Tasmania were analyzed to examine sex-specific differences in the sharks' coastal space-use and test novel methods for the analysis of acoustic telemetry data. Sex-specific space-use of the broadnose sevengill shark from acoustic telemetry data was analysed in two ways: The recently proposed spatial network analysis of between-receiver movements was employed to identify sex-specific space-use patterns. To include the full breadth of temporal information held in the data, movements between receivers were furthermore considered as transitions between states of a Markov chain, with the resulting transition probability matrix allowing the ranking of the relative importance of different parts of the study area. Both spatial network and Markov chain analysis revealed sex-specific preferences of different sites within the study area. The identification of priority areas differed for the methods, due to the fact that in contrast to network analysis, our Markov chain approach preserves the chronological sequence of detections and accounts for both residency periods and movements. In addition to adding to our knowledge of the ecology of a globally distributed apex predator, this study presents a promising new step towards condensing the vast amounts of information collected with acoustic tracking technology into straightforward results which are directly applicable to the management and conservation of any species that meet the assumptions of our model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seagrass species form important marine and estuarine habitats providing valuable ecosystem services and functions. Coastal zones that are increasingly impacted by anthropogenic development have experienced substantial declines in seagrass abundance around the world. Australia, which has some of the world's largest seagrass meadows and is home to over half of the known species, is not immune to these losses. In 1999 a review of seagrass ecosystems knowledge was conducted in Australia and strategic research priorities were developed to provide research direction for future studies and management. Subsequent rapid evolution of seagrass research and scientific methods has led to more than 70% of peer reviewed seagrass literature being produced since that time. A workshop was held as part of the Australian Marine Sciences Association conference in July 2015 in Geelong, Victoria, to update and redefine strategic priorities in seagrass research. Participants identified 40 research questions from 10 research fields (taxonomy and systematics, physiology, population biology, sediment biogeochemistry and microbiology, ecosystem function, faunal habitats, threats, rehabilitation and restoration, mapping and monitoring, management tools) as priorities for future research on Australian seagrasses. Progress in research will rely on advances in areas such as remote sensing, genomic tools, microsensors, computer modeling, and statistical analyses. A more interdisciplinary approach will be needed to facilitate greater understanding of the complex interactions among seagrasses and their environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are three key drivers of the biodiversity crisis: (1) the well known existing threats to biodiversity such as habitat loss, invasive pest species and resource exploitation; (2) direct effects of climate-change, such as on coastal and high elevation communities and coral reefs; and (3) the interaction between existing threats and climate-change. The third driver is set to accelerate the biodiversity crisis beyond the impacts of the first and second drivers in isolation. In this review we assess these interactions, and suggest the policy and management responses that are needed to minimise their impacts. Renewed management and policy action that address known threats to biodiversity could substantially diminish the impacts of future climate-change. An appropriate response to climate-change will include a reduction of land clearing, increased habitat restoration using indigenous species, a reduction in the number of exotic species transported between continents or between major regions of endemism, and a reduction in the unsustainable use of natural resources. Achieving these measures requires substantial reform of international, national and regional policy, and the development of new or more effective alliances between scientists, government agencies, non-government organisations and land managers. Furthermore, new management practices and policy are needed that consider shifts in the geographic range of species, and that are responsive to new information acquired from improved research and monitoring programs. The interactions of climate-change with existing threats to biodiversity have the potential to drive many species to extinction, but there is much that can be done now to reduce this risk.