110 resultados para captive bird


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many plant seeds and invertebrates can survive passage through the digestive system of birds, which may lead to long distance dispersal (endozoochory) in case of prolonged retention by moving vectors. Endozoochorous dispersal by waterbirds has nowadays been documented for many aquatic plant seeds, algae and dormant life stages of aquatic invertebrates. Anecdotal information indicates that endozoochory is also possible for fully functional, active aquatic organisms, a phenomenon that we here address experimentally using aquatic snails. We fed four species of aquatic snails to mallards (Anas platyrhynchos), and monitored snail retrieval and survival over time. One of the snail species tested was found to survive passage through the digestive tract of mallards as fully functional adults. Hydrobia (Peringia) ulvae survived up to five hours in the digestive tract. This suggests a maximum potential transport distance of up to 300 km may be possible if these snails are taken by flying birds, although the actual dispersal distance greatly depends on additional factors such as the behavior of the vectors. We put forward that more organisms that acquired traits for survival in stochastic environments such as wetlands, but not specifically adapted for endozoochory, may be sufficiently equipped to successfully pass a bird's digestive system. This may be explained by a digestive trade-off in birds, which maximize their net energy intake rate rather than digestive efficiency, since higher efficiency comes with the cost of prolonged retention times and hence reduces food intake. The resulting lower digestive efficiency allows species like aquatic snails, and potentially other fully functional organisms without obvious dispersal adaptations, to be transported internally. Adopting this view, endozoochorous dispersal may be more common than up to now thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting the response of faunal communities to fire presents a challenge for land managers worldwide because the post-fire responses of species may vary between locations and fire events. Post-fire recovery can occur via nucleated recovery from in situ surviving populations or by colonization from ex situ populations. Fine-scale spatial patterns in the patchiness of fires and the proximity of burnt sites to source populations may contribute to both the variability in post-fire responses and the processes by which populations recover. We examined the avifauna at recently burnt sites within extensive semi-arid shrublands of south-eastern Australia, including 72 sites < 5 years since fire and 26 sites 10 years since fire. Study sites represented a gradient of increasing distance from ‘unburnt’ vegetation (i.e. > 27 years since fire) and varied in the presence or absence of small (25–900 m2) unburnt patches of vegetation. For sites < 5 years since fire, species richness was higher at sites closer to unburnt vegetation and at sites containing unburnt patches. These patterns were no longer evident at sites of 10 years since fire. The probability of occurrence of three of seven bird species modelled decreased with increasing distance to unburnt vegetation, but this pattern was evident only at sites burnt uniformly. One species was found almost exclusively at patchily burnt sites. These results are consistent with the hypothesis that proximity to unburnt vegetation enhances post-fire occupancy, and that colonization from ex situ populations is an important process for post-fire recovery of avifauna. Additionally, small unburnt patches enhance the rapid recovery of assemblages post-fire. These patterns are important for understanding the dynamics of post-fire population recovery. We recommend that management of fire for ecological purposes should explicitly consider the role that the spatial attributes of fires play in determining the post-fire community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the processes leading to population declines in fragmented landscapes is essential for successful conservation management. However, isolating the influence of disparate processes, and dispersal in particular, is challenging. The Grey Shrike-thrush, Colluricincla harmonica, is a sedentary woodland-dependent songbird, with learned vocalizations whose incidence in suitable habitat patches falls disproportionally with decline in tree cover in the landscape. Although it has been suggested that gaps in tree cover might act as barriers to its dispersal, the species remains in many remnants of native vegetation in agricultural landscapes, suggesting that it may have responded to habitat removal and fragmentation by maintaining or even increasing dispersal distances. We quantified population connectivity of the Grey Shrike-thrush in a system fragmented over more than 120 years using genetic (microsatellites) and acoustic (song types) data. First, we tested for population genetic and acoustic structure at regional and local scales in search of barriers to dispersal or gene flow and signals of local spatial structuring indicative of restricted dispersal or localized acoustic similarity. Then we tested for effects of habitat loss and fragmentation on genetic and acoustic connectivity by fitting alternative models of mobility (isolation-by-distance [the null model] and reduced and increased movement models) across treeless vs. treed areas. Birds within 5 km of each other had more similar genotypes and song types than those farther away, suggesting that dispersal and song matching are limited in the region. Despite restricted dispersal detected for females (but not males), populations appeared to be connected by gene flow and displayed some cultural (acoustic) connectivity across the region. Fragmentation did not appear to impact greatly the dispersal of the Grey Shrike-thrush: none of the mobility models fit the genetic distances of males, whereas for females, an isolation-by-distance model could not be rejected in favor of the models of reduced or increased movement through treeless gaps. However, dissimilarities of the song types were more consistent with the model of reduced cultural connectivity through treeless areas, suggesting that fragmentation impedes song type sharing in the Grey Shrike-thrush. Our paper demonstrates that habitat fragmentation hinders important population processes in an Australian woodland bird even though its dispersal is not detectably impacted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitat loss and associated fragmentation effects are well-recognised threats to biodiversity. Loss of functional connectivity (mobility, gene flow and demographic continuity) could result in population decline in altered habitat, because smaller, isolated populations are more vulnerable to extinction. We tested whether substantial habitat reduction plus fragmentation is associated with reduced gene flow in three 'decliner' woodland-dependent bird species (eastern yellow robin, weebill and spotted pardalote) identified in earlier work to have declined disproportionately in heavily fragmented landscapes in the Box-Ironbark forest region in north-central Victoria, Australia. For these three decliners, and one 'tolerant' species (striated pardalote), we compared patterns of genetic diversity, relatedness, effective population size, sex-ratios and genic (allele frequency) differentiation among landscapes of different total tree cover, identified population subdivision at the regional scale, and explored fine-scale genotypic (individual-based genetic signature) structure. Unexpectedly high genetic connectivity across the study region was detected for 'decliner' and 'tolerant' species. Power analysis simulations suggest that moderate reductions in gene flow should have been detectable. However, there was evidence of local negative effects of reduced habitat extent and structural connectivity: slightly lower effective population sizes, lower genetic diversity, higher within-site relatedness and altered sex-ratios (for weebill and eastern yellow robin) in 10 x 10 km 'landscapes' with low vegetation cover. We conclude that reduced structural connectivity in the Box-Ironbark ecosystem may still allow sufficient gene flow to avoid the harmful effects of inbreeding in our study species. Although there may still be negative consequences of fragmentation for demographic connectivity, the high genetic connectivity of mobile bird species in this system suggests that reconnecting isolated habitat patches may be less important than increasing habitat extent and/or quality if these need to be traded off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress and animal well-being are often assessed using concentrations of glucocorticoids (GCs), a product of the hypothalamic–pituitary–adrenal axis. However, GC concentrations can also be modulated by predictable events, such as changes in season or life history stage. Understanding normative patterns of adrenal activity is critical for making valid conclusions about changes in GC concentrations. In this study, we validated an assay for monitoring fecal glucocorticoid metabolites (FGM) in Canada lynx. We then used this technique to assess patterns of adrenal activity in Canada lynx across several contexts. Our results show that captive lynx have higher FGM concentrations than wild lynx, which may be related to differences in stress levels, metabolic rate, diet, or body condition. We also found that FGM concentrations are correlated with reproductive status in females, but not in males. For males, seasonal increases in FGM expression coincide with the onset of the breeding season, whereas in females, FGM increase toward the end of the breeding season. This information provides a valuable foundation for making inferences about normative versus stress-induced changes in adrenal activity in Canada lynx.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An incomplete tarsometatarsus identified as an indeterminate species of Dromornithidae is described from the upper Miocene–lower Pliocene shallow marine Black Rock Sandstone at Beaumaris, Victoria, Australia. This isolated specimen represents one of the few pre-Pleistocene dromornithids with a well-constrained geologic age. Additionally, it is one of the few pre-Quaternary dromornithid fossils recorded from southeast Australia. Comparisons with known dromornithid taxa suggest that the Beaumaris dromornithid is distinct from previously
established species. This hitherto unknown species of dromornithid in the late Neogene of southeastern Australia cautions against deriving evolutionary patterns solely on the basis of fossils from northern Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Alex Selenitsch’s work, Restored Messy Life, the artist considers the materiality of the book form, placing emphasis on the normally invisible structure of a book by making the written word inaccessible. In my work Bird Caged / Caged Bird I highlight the materiality of animation, which is usually seen as ephemeral screen based images and make it exist as an object experienced within a different space and time.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire is a major disturbance process in many ecosystems world-wide, resulting in spatially and temporally dynamic landscapes. For populations occupying such environments, fire-induced landscape change is likely to influence population processes, and genetic patterns and structure among populations. The Mallee Emu-wren Stipiturus mallee is an endangered passerine whose global distribution is confined to fire-prone, semi-arid mallee shrublands in south-eastern Australia. This species, with poor capacity for dispersal, has undergone a precipitous reduction in distribution and numbers in recent decades. We used genetic analyses of 11 length-variable, nuclear loci to examine population structure and processes within this species, across its global range. Populations of the Mallee Emu-wren exhibited a low to moderate level of genetic diversity, and evidence of bottlenecks and genetic drift. Bayesian clustering methods revealed weak genetic population structure across the species' range. The direct effects of large fires, together with associated changes in the spatial and temporal patterns of suitable habitat, have the potential to cause population bottlenecks, serial local extinctions and subsequent recolonisation, all of which may interact to erode and homogenise genetic diversity in this species. Movement among temporally and spatially shifting habitat, appears to maintain long-term genetic connectivity. A plausible explanation for the observed genetic patterns is that, following extensive fires, recolonisation exceeds in-situ survival as the primary driver of population recovery in this species. These findings suggest that dynamic, fire-dominated landscapes can drive genetic homogenisation of populations of species with low-mobility and specialised habitat that otherwise would be expected to show strongly structured populations. Such effects must be considered when formulating management actions to conserve species in fire-prone systems.