105 resultados para boron nitride (BN) nanodisks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ball-milling and annealing is one effective method for the mass production of boron nitride nanotubes (BNNTs). We report that the method has been modified to a boron (B) ink annealing method. In this new process, the nanosize ball-milled B particles are mixed with metal nitrate in ethanol to form an ink-like solution, and then the ink is annealed in nitrogen-containing gas to form nanotubes. The new method greatly enhances the yield of BNNTs, giving a higher density of nanotubes. These improvements are caused by the addition of metal nitrate and ethanol, both of which can strongly boost the nitriding reaction, as revealed by thermogravimetric analysis. The size and structure of BNNTs can be controlled by varying the annealing conditions. This high-yield production of BNNTs in large quantities enables the large-scale application of BNNTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the bending deformation of a cantilever biosensor based on a single-walled carbon nanotube (CNT) and single-walled boron nitride nanotube (BNNT) due to bioparticle detection. Through 3-D modeling and simulations, the performance of the CNT and BNNT cantilever biosensors is analyzed. It is found that the BNNT cantilever has better response and sensitivity compared to the CNT counterpart. Additionally, an algorithm for an electrostatic-mechanical coupled system is developed. The cantilever (both BNNT and CNT) is modelled by accounting that a conductive polymer is deposited onto the nanotube surfaces. Two main approaches are considered for the mechanical deformation of the nanotube beam. The first one is differential surface stress produced by the binding of biomolecules onto the surface. The second one is the charge released from the biomolecular interaction. Also, different ambient conditions are considered in the study of sensitivity. Sodium Dodisyl Sulphate (SDS) provides better bending deformation than the air medium. Other parameters including length of beam, variation of beam's location, and chiralities are considered in the design. The results are in excellent agreement with the electrostatic equations that govern the deformation of cantilever.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlled surface modification of boron nitride nanotubes has been achieved by gentle plasma treatment. Firstly, it was shown that an amorphous surface layer found on the outside of the nanotubes can be removed without damaging the nanotube structure. Secondly, it was shown that an oxygen plasma creates nitrogen vacancies that then allow oxygen atoms to be successfully substituted onto the surface of BNNTs. The percentage of oxygen atoms can be controlled by changing the input plasma energy and by the Ar plasma pre-treatment time. Finally, it has been demonstrated that nitrogen functional groups can be introduced onto the surface of BNNTs using an N2 + H2 plasma. The N2 + H2 plasma also created nitrogen vacancies, some of which led to surface functionalization while some underwent oxygen healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data includes SEM and TEM images of boron nitride nanomaterials, including nanotubes, nanowires and nanosheets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nature and mechanism of interfacial reactions between boron nitride nanotubes (BNNTs) and aluminum matrix at high temperature (650 °C) are studied using high-resolution transmission electron microscopy (HRTEM). This study analyzes the feasibility of the use of BNNTs as reinforcement in aluminum matrix composites for structural application, for which interface plays a critical role. Thermodynamic comparison of aluminum (Al)-BNNT with analogous Al-carbon nanotube (Al-CNT) system reveals lesser amount of reaction in the former. Experimental observation also reveals thin (~7 nm) reaction-product formation at Al-BNNT interface even after 120 min of exposure at 650 °C. The spatial distribution of the reaction-product species at the interface is governed by the competitive diffusion of N, Al, and B. Morphology of the reaction products are influenced by their orientation relationship with BNNT walls. A theoretical prediction on Al-BNNT interface in macroscale composite suggests the formation of strong bond between the matrix and reinforcement phase.