158 resultados para asymmetrical rolling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behavior under uniaxial tension of Al-Mg alloy 5182 pre-deformed in conventional rolling (CR), asymmetric rolling-continuous (ASRC), and asymmetric rolling-reversed (ASRR) was investigated and modeled with a rate dependent crystal plasticity finite element method and VPSC (Visco-Plastic Self Consistent) model. M-K theory combined with Yld2000 model by Barlat et al. (Int. J. Plasticity 2003, 19, 1297) was used to predict the strain-based and stress-based formability for AA 5182 material. It was concluded that the new ASRR process has very compatible formability with improved strength compared to CR process. These merits can be directly applied for clam-shell resistant design in rigid-packaging industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 In this study, it is shown that a close to ideal shear texture can be formed throughout the thickness of a rolled sheet. Such rotation of rolling texture not only leads to the enhancement in grain refinement but also the secondary processing as compared to the symmetric rolling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric rolling (ASR) is a potential process to reach better grain refinement than in conventional rolling, thus, can lead to better mechanical properties. It is not known, however, how the introduction of a shear component will change the ideal orientations of the textures, and consequently, the evolution of plastic anisotropy. To understand the effect of the added shear on texture evolution in ASR, a stability analysis is carried out in orientation space and the variations in the position and strength of the ideal orientations are analysed as a function of the shear component. Then, modelling of R values is presented for various cases. On that basis, it is shown that there is an upper limit for the shear component in asymmetric rolling that still retains the 〈1 1 1〉 ND fibre (ND: direction normal to the sheet) which is good for formability. It is also found that better persistence of the ND fibre can be obtained by cyclically alternating the shear component. The theoretical results are well supported by comparison to experimental evidences. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, the effect of deformation mode (i.e., symmetric vs asymmetric rolling) on the extent of grain refinement and texture development in Ti-6Al-4V was examined through warm rolling of a martensitic starting microstructure. During rolling, the initial martensitic lath structure was progressively fragmented, primarily through continuous dynamic recrystallization. This eventually led to an ultrafine-grained (UFG) microstructure composed of equiaxed grains with a mean size of 180 to 230 nm, mostly surrounded by high-angle grain boundaries. Depending on the rolling reduction and deformation mode (symmetric and asymmetric), the rolled specimens displayed different layer morphologies throughout the specimen thickness: a fully UFG surface layer, a partial UFG transition layer, and a partially fragmented lath interior layer. Due to a higher level of effective strain and continuous rotation of the principle axis, asymmetric rolling resulted in a greater extent of grain refinement compared with symmetric rolling at a given thermomechanical condition. A bulk UFG structure was successfully obtained using 70 pct asymmetric rolling. In addition, the rolling texture exhibited various characteristics throughout the thickness due to a different combination of shear and compressive strains. Principally, the basal texture component was displaced from the normal toward rolling direction during asymmetric rolling, differing from the symmetric rolling textures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Austenitic steels with a carbon content of 0.0037 to 0.79 wt% C are torsion tested and modeled using a physically based constitutive model and an Integrated Phenomenological and Artificial neural Network (IPANN) model. The prediction of both the constitutive and IPANN models on steel 0.017 wt% C is then evaluated using a finite element (FEM) code ABAQUS with different reduction in the thickness after rolling through one roll stand. It is found that during the rolling process, the prediction accuracy of the reaction force from FEM simulation for both constitutive and IPANN models depends on the strain achieved (average reduction in thickness). By integrating FEM into IPANN model and introducing the product of strain and stress as an input of the ANN model, the accuracy of this integrated FEM and IPANN model is higher than either the constitutive or IPANN model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is described for making rapid in situ field measurements of riverbed topography over spatial scales of ≅1–10 m. This method uses rolling balls to make quick, accurate measurements of river-bed roughness at several spatial scales. Random sampling and replication generate multiple estimates of the fractal dimension (d) that can be used to test for significant differences in the complexity of riverbed architecture between habitat types and spatial scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A plain carbon steel was deformed using a hot torsion deformation simulator. A schedule known to produce strain-induced ferrite was used with the strain interrupted for increasing intervals of time to determine the effect of an isothermal hold on the final microstructure. Microscopy and electron back-scattered diffraction (EBSD) were used to analyse the changes that occurred in the partially transformed microstructure during the hold and the subsequent applied strain. The strain-induced ferrite coarsened during the hold and this coarsened ferrite was refined during the second deformation. These results were compared to those obtained for a different plain carbon steel deformed in single pass rolling close to the Ar3 temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructures and textures of coarse grained cold rolled, partially recrystallized and fully recrystallized low carbon and interstitial free steel were examined by optical microscopy, scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The recrystallization textures of the two grades are markedly different, with the low carbon steel having a predominantly Goss {11O}<OOl> texture and the interstitial free steel having a <1ll>/1ND texture with a strong {III }<112> component. One possible explanation for the texture difference is that less severe localization of flow during deformation of interstitial free steels causes less Goss nuclei to be generated. While some support for this view is provided by the results presented in this paper, the results suggest that another mechanism may be at least partially responsible. Examination of micro
shear bands on the surface of pre-polished samples showed that a higher proportion of micro shear bands remained active at high rolling reductions in the low carbon steel, compared with the interstitial free grade. Regions of Goss orientation within bands that have ceased to operate rotate to
near-{ III }<112> orientations with further deformation. Consequently, the recrystallization texture of coarse grained interstitial free steels can be rationalized by a reduction in the availability of Goss nuclei and an increase in the availability of {Ill }<112> nuclei due to a "Goss to {Ill }<112>" rotation within micro shear bands that have ceased to operate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of a favourable recrystallization texture in interstitial-free (IF) steels depends on the availability and activation of particular nucleation sites in the deformed microstructure. This paper presents a description of the deformed microstructure of a commercially cold-rolled IF steel, with particular emphasis on the microstructural inhomogeneities and short-range orientational variation that provide suitable nucleation sites during recrystallization. RD-fibre regions deform relatively homogeneously and exhibit little short-range orientational variation. ND-fibre regions are heavily banded and exhibit considerable short-range orientational variation associated with the bands. While the overall orientational spread of ND-fibre grains frequently is about the ND-axis, the short-range orientational variation often involves rotation about axes in the TD-ND plane that are nearer to the TD than the ND.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two experiments were conducted to clarify the roles of grain size, solute carbon and strain in determining the recrystallization textures of cold-rolled and annealed steels. In the first experiment, samples of coarse-grained low-carbon (LC) and interstitial-free (IF) steels were cold-rolled to a 75% reduction in thickness. One sample from each steel was polished and cold-rolled an additional 5%, while the remaining samples were annealed for various times at 650°C. In the second experiment, three samples from a commercial LC steel sheet were rolled 70% at 300°C. Two of the samples were given a further rolling reduction of 5% of the original thickness, with one of the samples being given this additional reduction at 300°C and the other at room temperature. Goss recrystallization textures are strengthened by coarse initial grain sizes, the presence of solute carbon and rolling at a temperature where dynamic strain ageing occurs, but are weakened by additional rolling beyond a reduction of 70%, especially when this extra rolling is conducted at a temperature where dynamic strain ageing does not occur. Characterization of key features of the deformed and recrystallized steels using optical microscopy, scanning electron microscopy (SEM) and electron back-scatter diffraction (EBSD) supports a rationale for these effects based on the repeated activation and deactivation of shear bands and the influence of solute carbon and dynamic strain ageing on the operating life of the bands and the accumulation of strain within them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of considerable importance to the generation of ultrafine microstructures is the development of high misorientations. The present work examines the effect of the crystallographic rotation field in simple shear upon the evolution of misorientation during plastic working. A series of Taylor simulations are presented and it is shown that the rotation field is such that small differences in orientation in the region of the main torsion texture components are considerably increased with the application of shear strain. This did not occur in simulations of rolling. The torsion simulations compare favourably with the nature of the misorientations evident in hot worked 1050 Al and Ti-IF steel. It is concluded that shear deformation, by its nature, facilitates the generation of higher misorientations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two Fe-0.2C-1.55Mn-1.5Si (in wt pet) steels, with and without the addition of 0.039Nb (in wt pet), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, wedge-shaped samples were used to determine the effect of nominal equivalent strain (between 0 and 1.2) and carbon content (0.06--0.35%C) on ferrite grain refinement through dynamic strain-induced transformation (DSIT) in plain carbon steels using single-pass rolling. The microstructural evolution of the transformation of austenite to ferrite has been evaluated through the thickness of the strip. The results showed a number of important microstructural features as a function of strain which could be classified into three regions; no DSIT region, DSIT region and the ultrafine ferrite (UFF) grain region. Also, the extent of these regions was strongly influenced by the carbon content. The UFF microstructure consisted of ultrafine, equiaxed ferrite grains (<2 μ$m) with very fine cementite particles. In the centre of the rolled strip, there was a conventional ferrite-pearlite microstructure, although ferrite grain refinement and the volume fraction of ferrite increased with an increase in the nominal equivalent strain.