46 resultados para adaptive resonance theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a nonlinear adaptive backstepping controlleris designed to control the bidirectional power flow (charging/discharging) of battery energy storage systems (BESSs) in a DCmicrogrid under different operating conditions. The controller isdesigned in such a manner that the BESSs can store the excess energyfrom the renewable energy sources (RESs) in a DC microgrid aftersatisfying the load demand and also feeding back the stored energyto the load when RESs are not sufficient. The proposed controller isalso designed to maintain a constant voltage at the DC bus, whereall components of DC microgrids are connected, while controllingthe power flow of BESSs. This paper considers solar photovoltaic(PV) systems as the RES whereas a diesel generator equipped witha rectifier is used as a backup supply to maintain the continuity ofpower supply in the case of emergency situations. The controller isdesigned recursively based on the Lyapunov control theory whereall parameters within the model of BESSs are assumed to beunknown. These unknown parameters are then estimated throughthe adaptation laws and whose stability is ensured by formulatingsuitable control Lyapunov functions (CLFs) at different stages ofthe design process. Moreover, a scheme is also presented to monitorthe state of charge (SOC) of the BESS. Finally, the performanceof the proposed controller is verified on a test DC microgrid undervarious operating conditions. The proposed controller ensures the DCbus voltage regulation within the acceptable limits under differentoperating conditions.