72 resultados para Yi li.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

V2O5·nH2O nanosheets are fabricated hydrothermally with the acidified peroxovanadate solution at 200 °C for 12 h. The X-ray diffraction suggests that V2O5·nH2O nanosheets display lamellar ordering along c-axis direction. Transmission electron microscopy, field-emission scanning electron microscopy, and selected area electron diffraction indicate that V2O5·nH2O nanosheets are very thin in thickness and micron-sized in lateral dimension, and they are two-dimensional crystallites. X-ray photoelectron spectroscopy and thermogravimetric analysis are utilized to confirm the elemental composition of nanosheets. The formation process of nanosheets is also discussed in terms of time- and temperature-controlled experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we report a mild and cost-effective solution method to directly grow Ni-substituted Co3O4 (ternary NiCo2O4) nanorod arrays on Cu substrates. Electrochemical impedance spectroscopy (EIS) measurements show that the values of the electrolyte resistance Re and charge-transfer resistance Rct of NiCo2O4 are 6.8 and 63.5 Ω, respectively, which are significantly lower than those of binary Co3O4 (10.4 and 122.4 Ω). This EIS characterization strongly confirms that the ternary NiCo2O4 anode has much higher electrical conductivity than that of the binary Co3O4 electrode materials, which should greatly enhance the lithium storage performances. Due to the well-aligned 1D nanorod microstructure and a higher electrical conductivity, these ternary NiCo2O4 nanorod arrays manifest high specific capacity, excellent cycling stability (a high reversible capacity of about 830 mA h g−1 was achieved after 30 cycles at 0.5 C) and high rate capability (787, 695, 512, 254, 127 mA h g−1 at 1 C, 2 C, 6 C 50 C and 110 C, respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploring high performance cathode materials is essential to realize the adoption of Li-ion batteries for application in electric vehicles and hybrid electric vehicles. FeF3, as a typical iron-based fluoride, has been attracting considerable interest due to both the high electromotive force value of 2.7 V and the high theoretical capacity of 237 mA h g_1 (1e_ transfer). In this study, we report a facile lowtemperature solution phase approach for synthesis of uniform iron fluoride nanocrystals on reduced graphene sheets stably suspended in ethanol solution. The resulting hybrid of iron fluoride nanocrystals and graphene sheets showed high specific capacity and high rate performance for iron fluoride type cathode materials. High stable specific capacity of about 210 mA h g_1 at a current density of 0.2 C was achieved, which is much higher than that of LiFePO4 cathode material. Notably, these iron fluoride/ nanocomposite cathode materials demonstrated superior rate capability, with discharge capacities of 176, 145 and 113 mA h g_1 at 1, 2 and 5 C, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Informed by social exchange theory (SET) this study examines the role of trust in strategic alliances. Interviews were conducted with 17 participants who were strategic alliance managers in their organization. The study finds that trust is important to strategic alliance managers, and without it alliance managers would find it difficult to keep their alliance going. Trust is built over time, and based on the past experiences that the alliance manager has with their partner. The study found that prior networks, timely and appropriate communication and information exchange, fairness preservation and inter-firm adaptation were important in developing trust in the strategic alliance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR). The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT) based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.