91 resultados para Viral Replication


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many viruses have developed mechanisms to evade the IFN response. Here, HIV-1 was shown to induce a distinct subset of IFN-stimulated genes (ISGs) in monocyte-derived dendritic cells (DCs), without detectable type I or II IFN. These ISGs all contained an IFN regulatory factor 1 (IRF-1) binding site in their promoters, and their expression was shown to be driven by IRF-1, indicating this subset was induced directly by viral infection by IRF-1. IRF-1 and -7 protein expression was enriched in HIV p24 antigen-positive DCs. A HIV deletion mutant with the IRF-1 binding site deleted from the long terminal repeat showed reduced growth kinetics. Early and persistent induction of IRF-1 was coupled with sequential transient up-regulation of its 2 inhibitors, IRF-8, followed by IRF-2, suggesting a mechanism for IFN inhibition. HIV-1 mutants with Vpr deleted induced IFN, showing that Vpr is inhibitory. However, HIV IFN inhibition was mediated by failure of IRF-3 activation rather than by its degradation, as in T cells. In contrast, herpes simplex virus type 2 markedly induced IFNβ and a broader range of ISGs to higher levels, supporting the hypothesis that HIV-1 specifically manipulates the induction of IFN and ISGs to enhance its noncytopathic replication in DCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstracts: Lipid rafts are defined as specialized, dynamic microdomains that can be found in plasma membrane, and they are enriched with cholesterol and sphingolipids. Since lipid rafts’ first debut in the mid 1990’s, their existence, function and biological relevance have been a subject of intense scrutiny within the scientific community. Throughout this debate, we have learned a great deal regarding how cargos (both pathogens and cellular factors) are transported into and out of the cell through raft-dependent or raft-independent pathways. It is now apparent that a number of toxins, bacterial-, and viral-pathogens are able to exploit cholesterol and/or lipid rafts to gain a foot hold in their target hosts. The objective of this review is to describe our current appreciation on how selected pathogens utilise cholesterol and/or lipid rafts to support their propagation and to speculate on how some of these observations can be explored for the development of novel strategies that target plasma membrane lipids to control the spread of these viral- and bacterial-pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is now evident that host cells have evolved a remarkable variety of antiretroviral activities to defend themselves against viral invaders and in return viruses have developed ingenious ways to circumvent these defences and, in some cases, actually hijack cellular proteins in order to facilitate their replication. Study of this cat and mouse interplay between viruses and their host cells throughout evolution has lead to the identification of some of the most sophisticated antiviral strategies that mammals have developed to prevent viral infection. Recently, a wave of publications has significantly enhanced our understanding of the relationship between human immunodeficiency virus type 1 (HIV-1) and its host, including: 1) the HIV-1 protein Vif and its interaction with host cell nucleic acid editing enzymes; 2) the host cell restrictive factors that provide protection against retroviral infection, such as TRIM5; and 3) the late domains of retroviruses and their relationship with the host cell vacuolar protein sorting pathway. The focus of this review is to provide an up-to-date account of these important areas of HIV-1 research and highlight how some of these new discoveries can potentially be exploited for the development of novel anti-retroviral therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular signaling events are signposts of biological processes, which govern the direction and action of biological activities. Through millions of years of evolution, pathogens, such as viruses, have evolved to hijack host cell machinery to infect their targets and are therefore dependent on host cell signaling for replication. This review will detail our current understanding of the signaling events that are important for the early steps of HIV-1 replication. More specifically, the therapeutic potential of signaling events associated with chemokine coreceptors, virus entry, viral synapses, and post-entry processes will be discussed. We argue that these pathways may represent novel targets for antiviral therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stem-loop termed the kissing-loop hairpin is one of the most highly conserved structures within the leader of human immunodeficiency virus type 1 (HIV-1) and chimpanzee immunodeficiency virus genomic RNA. Because it plays a key role in the in vitro dimerization of short HIV-1 RNA transcripts (M. Laughrea and L. Jette, Biochemistry 35:1589-1598, 1996, and references therein; M. Laughrea and L. Jette, Biochemistry 35:9366-9374, 1996, and references therein) and because dimeric RNAs may be preferably encapsidated into the HIV-1 virus, alterations of the kissing-loop hairpin might affect the in vivo dimerization and encapsidation processes. Accordingly, substitution and deletion mutations were introduced into the kissing-loop hairpin of an infectious HIV-1 molecular clone in order to produce viruses by transfection methods. The infectivity of the resulting viruses was decreased by at least 99%, the amount of genomic RNA packaged per virus was decreased by 50 to 75%, and the proportion of dimeric genomic RNA was reduced from >80 to 40 to 50%, but the dissociation temperature of the genomic RNA was unchanged. There is evidence suggesting that the deletion mutations moderately inhibited CAp24 production but had no significant effect on RNA splicing. These results are consistent with the kissing-loop model of HIV-1 RNA dimerization. In fact, because intracellular viral RNAs are probably more concentrated in transfected cells than in cells infected by one virus and because the dimerization and encapsidation processes are concentration dependent, it is likely that much larger dimerization and encapsidation defects would have been manifested within cells infected by no more than one virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intracellular trafficking and subsequent incorporation of Gag-Pol into human immunodeficiency virus type 1 (HIV-1) remains poorly defined. Gag-Pol is encoded by the same mRNA as Gag and is generated by ribosomal frameshifting. The multimerization of Gag and Gag-Pol is an essential step in the formation of infectious viral particles. In this study, we examined whether the interaction between Gag and Gag-Pol is initiated during protein translation in order to facilitate the trafficking and subsequent packaging of Gag-Pol into the virion. A conditional cotransfection system was developed in which virion formation required the coexpression of two HIV-1-based plasmids, one that produces both Gag and Gag-Pol and one that only produces Gag-Pol. The Gag-Pol proteins were either immunotagged with a His epitope or functionally tagged with a mutation (K65R) in reverse transcriptase that is associated with drug resistance. Gag-Pol packaging was assessed to determine whether the Gag-Pol incorporated into the virion was preferentially packaged from the plasmid that expressed both Gag and Gag-Pol or whether it could be packaged from either plasmid. Our data show that translation of Gag and Gag-Pol from the same mRNA is not critical for virion packaging of the Gag-Pol polyprotein or for viral function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences in virion RNA dimer stability between mature and protease-defective (immature) forms of human immunodeficiency virus type 1 (HIV-1) suggest that maturation of the viral RNA dimer is regulated by the proteolytic processing of the HIV-1 Gag and Gag-Pol precursor proteins. However, the proteolytic processing of these proteins occurs in several steps denoted primary, secondary, and tertiary cleavage events and, to date, the processing step associated with formation of stable HIV-1 RNA dimers has not been identified. We show here that a mutation in the primary cleavage site (p2/nucleocapsid [NC]) hinders formation of stable virion RNA dimers, while dimer stability is unaffected by mutations in the secondary (matrix/capsid [CA], p1/p6) or a tertiary cleavage site (CA/p2). By introducing mutations in a shared cleavage site of either Gag or Gag-Pol, we also show that the cleavage of the p2/NC site in Gag is more important for dimer formation and stability than p2/NC cleavage in Gag-Pol. Electron microscopy analysis of viral particles shows that mutations in the primary cleavage site in Gag but not in Gag-Pol inhibit viral particle maturation. We conclude that virion RNA dimer maturation is dependent on proteolytic processing of the primary cleavage site and is associated with virion core formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The packaging of a mature dimeric RNA genome is an essential step in human immunodeficiency virus type 1 (HIV-1) replication. We have previously shown that overexpression of a protease (PR)-inactive HIV-1 Gag-Pro-Pol precursor protein generates noninfectious virions that contain mainly monomeric RNA (M. Shehu-Xhilaga, S. M. Crowe, and J. Mak, J. Virol. 75:1834-1841, 2001). To further define the contribution of HIV-1 Gag and Gag-Pro-Pol to RNA maturation, we analyzed virion RNA dimers derived from Gag particles in the absence of Gag-Pro-Pol. Compared to wild-type (WT) dimeric RNAs, these RNA dimers have altered mobility and low stability under electrophoresis conditions, suggesting that the HIV-1 Gag precursor protein alone is not sufficient to stabilize the dimeric virion RNA structure. The inclusion of an active viral PR, without reverse transcriptase (RT) and integrase (IN), rescued the stability of the virion RNA dimers in the Gag particles but did not restore the mobility of the RNAs, suggesting that RT and IN are also required for virion RNA dimer maturation. Thin-section electron microscopy showed that viral particles deficient in RT and IN contain empty cone-shaped cores. The abnormal core structure indicates a requirement for Gag-Pro-Pol packaging during core maturation. Supplementing viral particles with either RT or IN via Vpr-RT or Vpr-IN alone did not correct the conformation of the dimer RNAs, whereas expression of both RT and IN in trans as a Vpr-RT-IN fusion restored RNA dimer conformation to that of the WT virus and also restored the electron-dense, cone-shaped virion core characteristic of WT virus. Our data suggest a role for RT-IN in RNA dimer conformation and the formation of the electron-dense viral core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human immunodeficiency virus type 1 (HIV-1) Tat protein enhances reverse transcription, but it is not known whether Tat acts directly on the reverse transcription complex or through indirect mechanisms. Since processing of Tat by HIV protease (PR) might mask its presence and, at least in part, explain this lack of data, we asked whether Tat can be cleaved by PR. We used a rabbit reticulocyte lysate (RRL) system to make Tat and PR. HIV-1 PR is expressed as a Gag-Pol fusion protein, and a PR-inactivated Gag-Pol is also expressed as a control. We showed that Tat is specifically cleaved in the presence of PR, producing a protein of approximately 5 kDa. This result suggested that the cleavage site was located in or near the Tat basic domain (amino acids 49 to 57), which we have previously shown to be important in reverse transcription. We created a panel of alanine-scanning mutations from amino acids 45 to 54 in Tat and evaluated functional parameters, including transactivation, reverse transcription, and cleavage by HIV-1 PR. We showed that amino acids 49 to 52 (RKKR) are absolutely required for Tat function in reverse transcription, that mutation of this domain blocks cleavage by HIV-1 PR, and that other pairwise mutations in this region modulate reverse transcription and proteolysis in strikingly similar degrees. Mutation of Tat Y47G48 to AA also down-regulated Tat-stimulated reverse transcription but had little effect on transactivation or proteolysis by HIV PR, suggesting that Y47 is critical for reverse transcription. We altered the tat gene of the laboratory strain NL4-3 to Y47D and Y47N so that overlapping reading frames were not affected and showed that Y47D greatly diminished virus replication and conveyed a reverse transcription defect. We hypothesize that a novel, cleaved form of Tat is present in the virion and that it requires Y47 for its role in support of efficient reverse transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid rafts are enriched in cholesterol and sphingomyelin and are isolated on the basis of insolubility in detergents, such as Brij 98 and Triton X-100. Recent work by Holm et al. has shown that rafts insoluble in Brig 98 can be found in human immunodeficiency virus type 1 (HIV-1) virus-like particles, although it is not known whether raft-like structures are present in authentic HIV-1 and it is unclear whether a virion-associated raft-like structure is required for HIV replication. Independently, it was previously reported that virion-associated cholesterol is critical for HIV-1 infectivity, although the specific requirement of virion cholesterol in HIV-1 was not examined. In the present study, we have demonstrated that infectious wild-type HIV-1 contains Brij 98 rafts but only minimal amounts of Triton X-100 rafts. To directly assess the functional requirement of virion-associated rafts and various features of cholesterol on HIV-1 replication, we replaced virion cholesterol with exogenous cholesterol analogues that have demonstrated either raft-promoting or -inhibiting capacity in model membranes. We observed that variable concentrations of exogenous analogues are required to replace a defined amount of virion-associated cholesterol, showing that structurally diverse cholesterol analogues have various affinities toward HIV-1. We found that replacement of 50% of virion cholesterol with these exogenous cholesterol analogues did not eliminate the presence of Brij 98 rafts in HIV-1. However, the infectivity levels of the lipid-modified HIV-1s directly correlate with the raft-promoting capacities of these cholesterol analogues. Our data provide the first direct assessment of virion-associated Brij 98 rafts in retroviral replication and illustrate the importance of the raft-promoting property of virion-associated cholesterol in HIV-1 replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific impact of mutations that abrogate human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) dimerization on virus replication is not known, as mutations shown previously to inhibit RT dimerization also impact Gag-Pol stability, resulting in pleiotropic effects on HIV-1 replication. We have previously characterized mutations at codon 401 in the HIV-1 RT tryptophan repeat motif that abrogate RT dimerization in vitro, leading to a loss in polymerase activity. The introduction of the RT dimerization-inhibiting mutations W401L and W401A into HIV-1 resulted in the formation of noninfectious viruses with reduced levels of both virion-associated and intracellular RT activity compared to the wild-type virus and the W401F mutant, which does not inhibit RT dimerization in vitro. Steady-state levels of the p66 and p51 RT subunits in viral lysates of the W401L and W401A mutants were reduced, but no significant decrease in Gag-Pol was observed compared to the wild type. In contrast, there was a decrease in processing of p66 to p51 in cell lysates for the dimerization-defective mutants compared to the wild type. The treatment of transfected cells with indinavir suggested that the HIV-1 protease contributed to the degradation of virion-associated RT subunits. These data demonstrate that mutations near the RT dimer interface that abrogate RT dimerization in vitro result in the production of replication-impaired viruses without detectable effects on Gag-Pol stability or virion incorporation. The inhibition of RT activity is most likely due to a defect in RT maturation, suggesting that RT dimerization represents a valid drug target for chemotherapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse transcription of the HIV RNA genome is thought to occur in the host cell cytoplasm after viral adsorption. However, viral DNA has been isolated in cell-free virus particles. We have quantitated by polymerase chain reaction (PCR) amplification the amount of viral DNA in virions as compared to RNA. Virus produced by proviral DNA transfections of cos-7 cells or by chronically-infected H9 cells; neither of which express the cell surface CD4 receptor, contained at least 1000 times more viral RNA than DNA. In contrast, only 60 times more RNA than DNA was present in virus particles produced by transfection of Jurkat cells, which were CD4-positive and thus potentially susceptible to superinfection. Protease-defective virus, carrying only the precursor of reverse transcriptase (RT) p160gag-pol, contained virtually no detectable DNA. These results indicate that only mature RT (p66/p51) and not its precursor (p160gag-pol) is responsible for the presence of viral DNA in HIV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many viruses carry more than one segment of nucleic acid into the virion particle, but retroviruses are the only known group of viruses that contain two identical (or nearly identical) copies of the RNA genome within the virion. These RNA genomes are non-covalently joined together through a process known as genomic RNA dimerization. Uniquely, the RNA dimerization of the retroviral genome is of crucial importance for efficient retroviral replication. In this article, our current understanding of the relationship between retroviral genome conformation, dimerization and replication is reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonnucleoside reverse transcriptase inhibitors (NNRTIs) target HIV-1 reverse transcriptase (RT) by binding to a pocket in RT that is close to, but distinct, from the DNA polymerase active site and prevent the synthesis of viral cDNA. NNRTIs, in particular, those that are potent inhibitors of RT polymerase activity, can also act as chemical enhancers of the enzyme's inter-subunit interactions. However, the consequences of this chemical enhancement effect on HIV-1 replication are not understood. Here, we show that the potent NNRTIs efavirenz, TMC120, and TMC125, but not nevirapine or delavirdine, inhibit the late stages of HIV-1 replication. These potent NNRTIs enhanced the intracellular processing of Gag and Gag-Pol polyproteins, and this was associated with a decrease in viral particle production from HIV-1-transfected cells. The increased polyprotein processing is consistent with premature activation of the HIV-1 protease by NNRTI-enhanced Gag-Pol multimerization through the embedded RT sequence. These findings support the view that Gag-Pol multimerization is an important step in viral assembly and demonstrate that regulation of Gag-Pol/Gag-Pol interactions is a novel target for small molecule inhibitors of HIV-1 production. Furthermore, these drugs can serve as useful probes to further understand processes involved in HIV-1 particle assembly and maturation.