88 resultados para Torsion pendulum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure evolution during hot deformation of a 23Cr-5Ni-3Mo duplex stainless steel was investigated in torsion. The presence of a soft δ ferrite phase in the vicinity of austenite caused strain partitioning, with accommodation of more strain in the δ ferrite. Furthermore, owing to the limited number of austenite/austenite grain boundaries, the kinetics of dynamic recrystallisation (DRX) in austenite was very slow. The first DRX grains in the austenite phase formed at a strain beyond the peak and proceeded to <15% of the microstructure at the rupture strain of the sample. On the other hand, the microstructure evolution in δ ferrite started by formation of low angle grain boundaries at low strains and the density of these boundaries increased with increasing strain. There was clear evidence of continuous dynamic recrystallisation in this phase at strains beyond the peak. However, in the δ ferrite phase at high strains, most grains consisted of δ/δ and δ/γ boundaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rod rolling is a process where the deformation state of the workpiece between the work rolls is quite different from the strip rolling process. However, in most microstructure evolution models, the simple area strains (natural logarithm of the area reduction ratio) multiplied by a constant have been used to compute pass-by-pass evolution of austenite grain size (AGS) in rod (or bar) rolling, without any verification. The strains at a given pass play a crucial role in determining the recrystallization behavior (static or dynamic). In this study, an analytical model that calculates the pass-by-pass strain and strain rate in rod rolling has been developed and verified by conducting four-pass (oval–round) bar and plate rolling experiments. Numerical simulations have then been carried out for the four-pass rolling sequence using the area strain model and the new analytical model, focusing on the effect of the method for calculating the strain on the recrystallization behavior and evolution of AGS. The AGS predicted was compared with those obtained from hot torsion tests. It is shown that the analytical model developed in this study is more appropriate in the analysis of bar (or rod) rolling. It was found that the recrystallization behavior and evolution of AGS during this process were influenced significantly by the calculation method for the deformation parameters (strain and strain rate). The pass-by-pass strain obtained from the simple area strain model is inadequate to be used as an input to the equations for recrystallization and AGS evolution under these rolling conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent successful development of the equal channel angular pressing (ECAP) process in metals provides a feasible solution to produce ultra-fine or nano-grained bulk: materials with tailored material properties. However, ECAP is difficult to scale up commercially due to excessive load requirements. In this paper, a new Multi-ECAP process with die rotation is considered to obtain ultra-fine grain structured materials under a moderate deformation force. It is shown that an addition of torsion results in a reduction in the pressing force and an increase in severity of plastic deformation. An analysis using the upper bound method is found to be useful in predicting the pressing load and flow pattern of ECAP with and without rotational dies. Solutions are obtained for different inclined channel angles under different angular velocities of dies. Relative pressures are presented and some computed solutions are compared with those found by FEM simulation. The theoretical predictions of the pressing load are in good agreement with the simulation results. The amount of plastic deformation is determined by the inclined angle between the two intersecting channels, and the velocity ratio between the angular velocity of dies and the normal component of the punch velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the local distribution of austenite grain size (AGS) was experimentally determined by conducting single round-oval and square-diamond pass hot bar rolling experiments of AISI4135 steel. The rolling experiments were carried out using the laboratory mill. The local distribution of AGS was also determined numerically. In order to predict AGS distribution, the AGS evolution model was combined with three dimensional non-isothermal finite element analyses by adopting a modified additivity rule. AGS evolution model was experimentally determined from hot torsion test according to Hodgson's model. The predicted results were in a reasonably good agreement with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, kinetics of the static (SRX) and metadynamic recrystallization (MDRX) of AISI4135 steel was investigated using hot torsion tests. Continuous torsion tests were carried out to determine the critical strain for dynamic recrystallization (DRX). The times for 50% recrystallization of SRX and MDRX were determined, respectively, by means of interrupted torsion tests. Furthermore, austenite grain size (AGS) evolution due to recrystallization (RX) was measured by optical microscopy. With the help of the evolution model established, the AGS for hot bar rolling of AISI4135 steel was predicted numerically. The predicted AGS values were compared with the results using the other model available in the literature and experimental results to verify its validity. Then, numerical predictions depending on various process parameters such as interpass time, temperature, and roll speed were made to investigate the effect of these parameters on AGS distributions for square-diamond pass rolling. Such numerical results were found to be beneficial in understanding the effect of processing conditions on the microstructure evolution better and control the rolling processes more accurately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To develop a new form of the modified Ashworth scale (MAS) for muscle-tone assessment that combines the MAS score with the passive muscle-stretching velocity during the assessment of muscle tone, resulting in a measure that has higher intertester reliability than the MAS.

Design: Twanty-two volunteer subjects with spinal cord injuries at a tertiary care outpatient and inpatient spinal cord injury rehabilitation center affiliated with a university were recruited for this study.

Results: A decision tree in which V-MAS scores were obtained was developed. The data obtained from three independent raters, when adjusted by means of the V-MAS, showed an excellent interrater reliability.

Conclusions: Results indicated that the V-MAS is a more reliable measure. In addition, the resulting units of the V-MAS, ranging from 0 to 1, are of the same form as pendulum test data. The V-MAS method is quite simple to use because the rater need only measure the angular range and duration of the passive movement to calculate average velocity during the MAS assessment in addition to the normal MAS rating of muscle tone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystallographic rotation field for deformation in torsion is such that it is possible for orientations close to stable orientations to rotate away from the stable orientation. A Taylor type model was used to demonstrate that this phenomenon has the potential to transform randomly generated low-angle boundaries into high-angle boundaries. After imposing an equivalent strain of 1.2, up to 40% of the simulated boundaries displayed a disorientation in excess of 15°. These high-angle boundaries were characterised by a disorientation axis close to parallel with the sample radial direction. A series of hot torsion tests was carried out on 1050 aluminium to seek evidence for boundaries formed by this mechanism. A number of deformation-induced high-angle boundaries were identified. Many of these boundaries showed disorientation axes and rotation senses similar to those seen in the simulations. Between 10% and 25% of all the high-angle boundary present in samples twisted to equivalent strains between 2 and 7 could be attributed to the present mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present work is searching for the correlation between the carbon content in steels and the parameters of the rheological models, which are used to describe the materials behavior during hot plastic deformation. This correlation can be expected in the internal variable models, which are based on physical phenomena occurring in the material. Such a model, based on the dislocation density as the internal variable, is investigated in this work. The experiments including hot torsion tests are used for the analysis.
The procedure is composed of three parts. Plastometric tests were performed for steels with various carbon content. Optimization techniques were applied next to determine the coefficients in the internal variable rheological model for these steels. Two versions of the model are considered. One is based on the average dislocation density and the second accounts for the distribution of dislocation densities. Evaluation of correlation between carbon content and such coefficients in the models as activation energy for self diffusion, activation energy for recrystallization, grain boundary mobility, recovery coefficient etc. was the main objective of the work. In consequence, the model which may be used for simulation of hot forming processes for steels with various chemical compositions, is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to improve the understanding of the dynamic and post-dynamic recrystallization behaviours of AISI 304 austenitic stainless steel, a series of hot torsion test have been performed under a range of deformation conditions. The mechanical and microstructural features of dynamic recrystallization (DRX) were characterized to compare and contrast them with those of the post-dynamic recrystallization. A necklace type of dynamically recrystallized microstructure was observed during hot deformation at 900 °C and at a strain rate of 0.01 s−1. Following deformation, the dependency of time for 50% recrystallization, t50, changed from “strain dependent” to “strain independent” at a transition strain (ε*), which is significantly beyond the peak. This transition strain was clearly linked to the strain for 50% dynamic recrystallization during deformation. The interrelations between the fraction of dynamically recrystallized microstructure, the evolution of post-dynamically recrystallized microstructure and the final grain size have been established. The results also showed an important role of grain growth on softening of deformed austenite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of initial grain size on the recrystallization behavior of a type 304 austenitic stainless steel during and following hot deformation was investigated using hot torsion. The refinement of the initial grain size to 8 μm, compared with an initial grain size of 35 μm, had considerable effects on the dynamic recrystallization (DRX) and post-DRX phenomena. For both DRX and post-DRX, microstructural investigations using electron backscattered diffraction confirmed an interesting transition from conventional (discontinuous) to continuous DRX with a decrease in the initial grain size. Also, there were unexpected effects of initial grain size on DRX and post-DRX grain sizes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SolospunTM is a spinning technology which provides the means to produce a singles yarn that can be successfully woven as either warp or weft. The technology is a versatile and cost effective alternative to two-folding, Sirospun or sizing. It offers significant benefits in terms of efficiency and productivity. SolospunTM is a simple, inexpensive, clip-on attachment for the spinning of long staple, weavable singles yarns. The technology is the result of a joint development between CSIRO Textile and Fibre Technology, The Woolmark Company and WRONZ and was commercially released in 1998. It is now successfully operating in worsted mills worldwide. The SolospunTM hardware consists of a pair of rollers held in a bracket, which is clipped onto the front of the pendulum-drafting arm. Each roller is positioned immediately below, and parallel to, each top front draft roller where it interacts with the emerging drafted fibre strand before twist insertion. The roller-fibre interaction subtly changes the structure of the yarn, which dramatically increases its abrasion resistance. This allows Solospun yarns to be woven without twofolding or sizing, providing significant cost savings. Depending on fabric structure, weaving performance is equivalent to that of conventional two-fold yarns. Fabrics woven from SolospunTM yarns are of good quality and appearance. Some aspects, including preferred hand and FAST results, are equal or superior to two-fold yarn fabrics. As with compact and condensed spinning, SolospunTM offers significant reductions in yarn
hairiness. However, Solospun can be simply implemented on existing spinning frames and goes much further by making the singles yarns weavable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure and crystallographic texture development in an austenitic Ni-30 pct Fe model alloy was investigated within the dynamic recrystallization (DRX) regime using hot torsion testing. The prominent DRX nucleation mechanism was strain-induced grain boundary migration accompanied by the formation of large-angle sub-boundaries and annealing twins. The increase in DRX volume fraction occurred through the formation of multiple twinning chains. With increasing strain, the pre-existing Σ3 twin boundaries became gradually converted to general boundaries capable of acting as potent DRX nucleation sites. The texture characteristics of deformed grains resulted from the preferred consumption of high Taylor factor components by new recrystallized grains. Similarly, the texture of DRX grains was dominated by low Taylor factor components as a result of their lower consumption rate during the DRX process. The substructure of deformed grains was characterized by “organized,” banded subgrain arrangements, while that of the DRX grains displayed “random,” more equiaxed subgrain/cell configurations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Masonry walls are usually laid with the individual masonry units along a course overlapping units in the course below. Commonly, the perpend joints in the course occur above the mid-points of the units below to form a ‘half-bond’ or above a third point to form a ‘third-bond’. The amount of this overlap has a profound influence on the strength of a wall supported on three or four sides, where lateral pressures from wind cause combined vertical and horizontal flexure. Where masonry units are laid with mortar joints, the torsional shear bond resistance between the mortar and overlapping units largely determines the horizontal flexural strength. If there is zero bond strength between units, then the horizontal flexural strength is derived from the frictional resistance to torsion on the overlapping bed-faces of the units. This thesis reports a theoretical and experimental investigation into the frictional properties of overlapping units when subjected to combinations of vertical and horizontal moments and vertical axial compression. These basic properties were used to develop a theory to predict the lateral strength of walls supported on two, three or four sides. A plastic theory of behaviour was confirmed by experiment. The theory was then used to determine maximum unbraced panel sizes for particular boundary conditions. Design charts were developed to determine temporary bracing requirements for panels during construction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An austenitic Ni-30%Fe model alloy was employed to investigate the texture and substructure development within the deformed matrix and dynamically recrystallized (DRX) grains during hot torsion deformation. Both the deformed matrix and DRX grains predominantly displayed the crystallographic texture components expected for simple shear deformation. The characteristics of the deformed matrix texture evolution during deformation largely resulted from the preferred consumption of high Taylor factor components by new recrystallized grains. Likewise, the comparatively weaker crystallographic texture of DRX grains became increasingly dominated by low Taylor factor components as a result of their easier nucleation and lower consumption rate during DRX. There was a significant difference in the substructure formation mechanism between the deformed matrix and DRX grains for a given texture component. The deformed matrix substructure was largely characterized by “organized”, banded subgrain arrangements with alternating misorientations, while the substructure of DRX grains was more “random” in character and displayed complex, more equiaxed subgrain/cell arrangements characterized by a local accumulation of misorientations. Substructure characteristics of individual orientation components were principally consistent with the corresponding Taylor factor values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The substructure and texture development during dynamic recrystallization (DRX) of an austenitic Ni–30%Fe model alloy was investigated using hot torsion testing. The current results revealed that the DRX texture was dominated by grains with a low Taylor factor component. This was related to the preferred nucleation and lower consumption rates of these grains during DRX. The substructure of DRX grains was ‘‘random” in character and displayed complex subgrain/cell arrangements that largely depended on grain orientation.