76 resultados para Thermo-tolerance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of advanced high strength steels (AHSS) using a conventional rolling setup is one of the biggest challenges to steel industry. It has been found that fine precipitation in a soft matrix, formed after hot rolling, can markedly improve the mechanical properties. In this work, three dimensional atom probe tomography (3D-APT) has been used to study the formation of precipitates in thermomechanically simulated steel. 3D-APT data reveals co-existence of numerous nano clusters with precipitates. Also, quantitative analysis of the nano clusters and precipitates shows clusters are as small as mm in size. Precipitates are found to be disc shaped with the composition of equilibrium precipitates (TiMo)C. Thus, 3D-APT is seen as an ideal technique to complement TEM to understand the nanoscale features in thermomechanically processed steel for further improvements in the mechanical properties of AHSS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low efficiencies and costly electrode materials have limited harvesting of thermal energy as electrical energy using thermo-electrochemical cells (or “thermocells”). We demonstrate thermocells, in practical configurations (from coin cells to cells that can be wrapped around exhaust pipes), that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes. These electrodes provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency. Thermocell efficiency is further improved by directly synthesizing MWNTs as vertical forests that reduce electrical and thermal resistance at electrode/substrate junctions. The efficiency of thermocells with MWNT electrodes is shown to be as high as 1.4% of Carnot efficiency, which is 3-fold higher than for previously demonstrated thermocells. With the cost of MWNTs decreasing, MWNT-based thermocells may become commercially viable for harvesting low-grade thermal energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Nitrate tolerance, the loss of vascular responsiveness with continued use of nitrates, remains incompletely understood and is a limitation of these therapeutic agents. Vascular superoxide, generated by uncoupled endothelial NOS (eNOS), may play a role. As arginase competes with eNOS for L-arginine and may exacerbate the production of reactive oxygen species (ROS), we hypothesized that arginase inhibition might reduce nitrate tolerance.

EXPERIMENTAL APPROACH Vasodilator responses were measured in aorta from C57Bl/6 and arginase II knockout (argII –/–) mice using myography. Uncoupling of eNOS, determined as eNOS monomer : dimer ratio, was assessed using low-temperature SDS-PAGE and ROS levels were measured using L-012 and lucigenin-enhanced chemiluminescence.

KEY RESULTS Repeated application of glyceryl trinitrate (GTN) on aorta isolated from C57Bl/6 mice produced a 32-fold rightward shift of the concentration–response curve. However this rightward shift (or resultant tolerance) was not observed in the presence of the arginase inhibitor (s)-(2-boronethyl)-L-cysteine HCl (BEC; 100 µM) nor in aorta isolated from argII –/– mice. Similar findings were obtained after inducing nitrate tolerance in vivo. Repeated administration of GTN in human umbilical vein endothelial cells induced uncoupling of eNOS from its dimeric state and increased ROS levels, which were reduced with arginase inhibition and exogenous L-arginine. Aortae from GTN tolerant C57Bl/6 mice exhibited increased arginase activity and ROS production, whereas vessels from argII –/– mice did not.

CONCLUSION AND IMPLICATIONS Arginase II removal prevents nitrate tolerance. This may be due to decreased uncoupling of eNOS and consequent ROS production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of food allergic diseases is rising and poses an increasing clinical problem. Peanut allergy affects around 1% of the population and is a common food allergy associated with severe clinical manifestations. The exact route of primary sensitization is unknown although the gastrointestinal immune system is likely to play an important role. Exposure of the gastrointestinal tract to soluble antigens normally leads to a state of antigen-specific systemic hyporesponsiveness (oral tolerance). A deviation from this process is thought to be responsible for food-allergic diseases. In this study, we have developed a murine model to investigate immunoregulatory processes after ingestion of peanut protein and compared this to a model of oral tolerance to chicken egg ovalbumin (OVA). We demonstrate that oral tolerance induction is highly dose dependent and differs for the allergenic proteins peanut and OVA. Tolerance to peanut requires a significantly higher oral dose than tolerance to OVA. Low doses of peanut are more likely to induce oral sensitization and increased production of interleukin-4 and specific immunoglobulin E upon challenge. When tolerance is induced both T helper 1 and 2 responses are suppressed. These results show that oral tolerance to peanut can be induced experimentally but that peanut proteins have a potent sensitizing effect. This model can now be used to define regulatory mechanisms following oral exposure to allergenic proteins on local, mucosal and systemic immunity and to investigate the immunomodulating effects of non-oral routes of allergen exposure on the development of allergic sensitization to peanut and other food allergens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable and re-usable thermo-responsive hydrogel nanofibres were roduced by electrospinning poly(Nisopropylacrylamide) (PNIPAM) in presence of a polyhedral oligomeric silsesquioxane (POSS) possessing eight epoxide groups, and of a 2-ethyl-4-methylimidazole (EMI) as a catalyst, followed by a heat curing treatment. The roles of the organic-base catalyst in the formation of crosslinked polymer network, fibre morphologies, and hydrogel properties were examined in this paper.