81 resultados para TOXICIDAD POR INGESTION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elite athletes require a greater dietary protein intake than recreationally active people to maintain optimal muscular function. The timing of protein ingestion relative to exercise is critical to maximizing its physiological impact on skeletal muscles. Sports protein supplements provide a convenient means of supplying athletes with an adequate and timely source of quality dietary protein. There is now strong evidence that not all dietary proteins are equipotent in their effects on various aspects of athletic performance and specific protein isolates can provide benefits to athletes beyond simple supply of nutritional amino acids. Thus, there is an opportunity to develop new functional protein supplements to maximize athletic performance. This paper outlines the clinical evidence for the benefits of dairy proteins in sports performance and describes the development of new dairy protein supplements to build muscle strength, and to expedite recovery of strength following muscle-damaging eccentric exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat generated by the specific dynamic action (SDA) associated with feeding is known to substitute for the thermoregulatory costs of cold-exposed endotherms; however, the effectiveness of this depends on food  temperature. When food is cooler than core body temperature, it is warmed by body heat and, consequently, imposes a thermoregulatory challenge to the animal. The degree to which this cost might be `paid' by SDA depends on the relative timing of food heating and the SDA response. We investigated this phenomenon in two genera of endotherms, Diomedea and Thalassarche albatrosses, by measuring postprandial metabolic rate following ingestion of food at body temperature (40°C) and cooler (0 and 20°C). This permitted us to estimate potential contributions to food warming by SDA-derived heat, and to observe the effect of cold food on metabolic rate. For meal sizes that were ~20% of body mass, SDA was 4.22±0.37% of assimilated food energy, and potentially contributed 17.9±1.0% and 13.2±2.2% of the required heating energy of food at 0°C for Diomedea and Thalassarche albatrosses, respectively, and proportionately greater quantities at higher food temperatures. Cold food increased the rate at which postprandial metabolic rate increased to 3.2–4.5 times that associated with food ingested at body temperature. We also found that albatrosses generated heat in excess by more than 50% of the estimated thermostatic heating demand of cold food, a probable consequence of time delays in physiological responses to afferent signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recovery after prolonged or high-intensity exercise is characterised by a substantial increase in adipose tissue lipolysis, resulting in elevated rates of plasma-derived fat oxidation. Despite the large increase in circulating fatty acids (FAs) after exercise, only a small fraction of this is taken up by exercised muscle in the lower extremities. Indeed, the predominant fate of non-oxidised FAs derived from post-exercise lipolysis is reesteriflcation hi the liver. During recovery from endurance exercise, a number of changes also occur hi skeletal muscle that allow for a high metabolic priority towards glycogen resynthesis. Reducing muscle glycogen during exercise potentiates these effects, however the cellular and molecular mechanisms regulating substrate oxidation following exercise remain poorly defined. The broad arm of this thesis was to examine the regulation of fat metabolism during recovery from glycogen-lowering exercise hi the presence of altered fat and glucose availability. In study I, eight endurance-trained males completed a bout of exhaustive exercise followed by ingestion of carbohydrate (CHO)-rich meals (64-70% of energy from CHO) at 1, 4, and 7 h of recovery. Duplicate muscle biopsies were obtained at exhaustion and 3, 6 and 18 h of recovery. Despite the large intake of CHO during recovery (491 ± 28 g or 6.8 + 0.3 g • kg-1), respiratory exchange ratio values of 0.77 to 0.84 indicated a greater reliance on fat as an oxidative fuel. Intramuscular triacylglycerol (IMTG) content remained unchanged in the presence of elevated glucose and insulin levels during recovery , suggesting IMTG has a negligible role in contributing to the enhanced fat oxidation after exhaustive exercise. It appears that the partitioning of exogenous glucose towards glycogen resynthesis is of high metabolic priority during immediate post-exercise recovery, supported by the trend towards reduced pyruvate dehydrogenase (PDH) activity and increased fat oxidation. The effect of altering plasma FA availability during post-exercise recovery was examined in study II. Eight endurance-trained males performed three trials consisting of glycogen-lowering exercise, followed by infusion of either saline (CON), saline + nicotinic acid (NA) (LFA) or Intralipid and heparin (HFA). Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Altering the availability of plasma FAs during recovery induced changes in whole-body fat oxidation that were unrelated to differences in skeletal muscle malonyl-CoA. Furthermore, fat oxidation and acetyl-CoA carboxylase (ACC) phosphorylation appear to be dissociated after exercise, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity have an important role in regulating malonyl-CoA and fat metabolism in human skeletal muscle after exercise. Alternative mechanisms include citrate and long-chain fatty acyl-CoA mediated changes in ACC activity, or differences in malonyl-CoA decarboxylase (MCD) activity. Reducing plasma FA concentrations with NA attenuated the post-exercise increase in MCD and pyruvate dehydrogenase kinase 4 (PDK4) gene expression, suggesting that FAs and/or other factors induced by NA are involved hi the regulation of these genes. Despite marked changes hi plasma FA availability, no significant changes in IMTG concentration were detected, providing further evidence that plasma-derived FAs are the preferential fuel source contributing to the enhanced fat oxidation post-exercise during recovery. To further examine the effect of substrate availability after exercise, Study III investigated the regulation of fat metabolism during a 6 h recovery period with or without glucose infusion. Enhanced glucose availability significantly increased CHO oxidation compared with the fasted state, although no differences in whole-body fat oxidation were apparent. Consistent with the similar rates of fat metabolism, no difference hi AMPK or ACCβ phosphorylation were observed between trials. In addition, no significant treatment or time effects for IMTG concentration were detected during recovery. The large exercise-induced PDK4 gene expression was attenuated when plasma FAs were reduced during glucose infusion, supporting the hypothesis that PDK4 is responsive to sustained changes in lipid availability and/or changes in plasma insulin. Furthermore, the possibility exists that the suppression of PDK4 mRNA also reduced PDK activity and thus maintained PDH activity to account for the higher rates of CHO oxidation observed during glucose infusion compared with the control trial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study the nutrition, growth and production of C. destructor was examined. Selected nutritional requirements of juvenile animals were determined under controlled conditions with the aim of developing a pelleted diet for use in hatcheries, nurseries and growout situations. The best developed diet was assessed for its potential as a supplementary feed for animals cultured in earthen environments. The protein requirements were first determined simultaneously with an evaluation of the effect of replacing animal protein (fishmeal) by soybean meal. Juveniles were reared communally for 59 d on isoenergetic diets containing 15-30% protein and graded levels of soybean meal (0-60%, of protein). When soybean meal was included at a level of 40-60%, growth was reduced relative to that achieved with control diets containing 15% and 20% protein, but this was not the case at a 20% soybean meal substitution level. A two-way interaction occurred between dietary protein and soybean meal content. Higher protein feeds enabled higher soybean meal inclusion levels without significantly affecting growth. Protein increases of 5% produced better growth at the 40% and 60% soybean meal substitution levels. This effect was less pronounced in the control and the 20% soybean meal diets. Carcass %protein increased and %lipid decreased as dietary protein increased. A similar effect occurred by increasing the soybean meal level to 60%. No obvious trend in carcass moisture, energy, and ash occurred. A protein requirement of 30% was apparent when fish meal and soybean meal were included in diets at levels of 20% and 24% (dry matter) respectively. Alternative protein sources to soybean meal were subsequently identified. Juveniles were maintained for 12 weeks on isoenergetic diets containing 30% protein and differing in the primary source of protein used, with meat, snail, soybean, yabby, and zooplankton meals comprising the major protein ingredient. No significant difference occurred in mean weight (MW), percentage weight gain (%WG), SGR or survival among diets. Food conversion ratios (FCR) were low, with a minimum value of 0.95 for the snail-based diet. The apparent net protein utilisation (ANPU) varied from 29.6% (zooplankton-based diet) to 41.2% (snail-based diet). Carcass composition varied with diet, with the greatest difference occurring in carapace colour. Animals fed the zooplankton-based diet developed the strongest, most natural pigmentation. A new combination of previously used protein-based ingredients was subsequently tested with reference to two yabby species, Cherax albidus and Cherax destructor, that were grown simultaneously in identical conditions. Juvenile male animals were reared individually for 20 weeks on isoenergetic diets containing 15% or 30% protein with fish meal, soybean meal, yabby meal and wheat products forming the basis of the diets. C albidus grew the fastest and utilised the food the most effectively. Carcass composition was influenced by diet with the 30% protein diet resulting in an increase in carcass protein and ash and a decrease in carcass lipid and energy relative to the low protein diet. Carcass moisture and calcium were not affected by diet. The intermoult period (IP) was highly dependent on the premoult weight (W) but the mean moult increment (WI, as weight) was independent of the PM. The orbital carapace length (OCL) and the abdominal length (ABL) %moult increments generally declined with an increase in PM whereas the propus length (PL) %moult increment generally increased. The IP, WI, %OCL, %ABL, and %PL moult increments varied according to diet and to species. Elevated dietary protein caused a reduction to the IP (for similar sized animals) by 11 d and 7 d and an increase to the WI by 85% and 81% in C. albidus and C destructor respectively. Dietary induced morphological changes also occurred. Animals of a standard OCL (both species) had significantly larger abdomens when fed the higher protein diet. Growth on the best developed diet was compared to the growth obtained on a natural diet of freshwater zooplankton. Juveniles were reared individually for 12 weeks on the two diets. The MW, %WG and SGR were higher for the zooplankton diet. Carcass composition was influenced by diet and the zooplankton fed animals had a higher carcass %protein, %lipid, %ash and %fibre content and were more richly pigmented than animals fed pellets. The IP and the WI were highly dependent on the PM and varied according to diet; feeding with zooplankton reduced the IP by 1.2 days and increased the WI by 13.7% compared to pellets. Nutrient digestibility was determined for the pelleted diets evaluated in the growth trials. Protein digestibility (PD) and dry matter digestibility (DMD), using chromic oxide (Cr2O3) as an exogenous marker, were high for all diets, at around 93% and 83% respectively. Ash digestibility varied considerably from 17% to 73% for the snail and yabby meal diets respectively. Crude fibre digestibility was around 50% and probably indicates cellulase activity. Alternative markers to Cr2O3 were evaluated. Ash was considered to be the most suitable alternative to Cr2O3, providing a reasonable, albeit lower, estimate of nutrient digestibility. Cr2O3 and ash were preferentially excreted whereas fibre was retained in the digestive system for a longer period, consequently, the collection of a particular fraction of the deposited faeces (late or early) substantially affected the digestibility coefficients. In earthen-based environments, animals fed the best developed diet were compared to animals cultured using a forage crop of clover (Trifolium repens). Three supplementary feeding strategies representing varying levels of management intensity were evaluated in a series of trials conducted in ponds and pond microcosms. Growth on pellets consistently exceeded that obtained with the forage crop, with final MW being 67-159% higher than that using clover and appeared to be the result of direct pellet consumption and from a pellet fertiliser effect (on the sediment). Within-pond DMD and PD were high and similar for each treatment (DMD = 51-58%; PD = 89-92%). In the control pond, DMD and PD increased with each successive flood. The faecal egestion rate (PER) decreased with each successive flood in all ponds, and is negatively related to animal weight and to foregut fullness (FF) according to power curves. FF was consistently lowest in the control pond. Mean FF was 48.5%, 62.3%, and 26.7% for the pellet, crop and control ponds respectively. FF increased to the third flood in each pond. The foregut protein content was high in all samples and the mean values were 33.9%, 32.7% and 35.6% for the pellet, crop and control ponds respectively. Foregut ash was highly variable within each pond and is inversely related to the foregut protein content. In the control and pellet ponds the highest foregut ash content occurred during flood 1. The culture system (aquaria or pond) strongly influenced the composition of the foregut content. The foregut of animals fed the manufactured diet (B2) in ponds contained approximately 176% more ash and 5% more protein than the foregut of animals fed in bare-bottom tanks. The FF of the tank fed animals was approximately 45% higher than the FF of pond fed animals after a similar feeding period. Base-line yields for extensive production systems appeared to be around 400kg ha-1. The supplementary addition of T. repens produced yields of approximately 635kg ha-1 (in ponds) to around 1086kg ha-1 (in tanks). The sequential addition of cut-clover to tanks stimulated growth to levels approaching those achieved on pellets. Yabbies stocked into ponds at 15-20 m-2 with a mean weight of 2.67g and fed a 30% protein pelleted diet for 100 d, resulted in a yield of approximately 1117kg ha-1, but only 2% of the population were above a marketable size of 50g. The feed utilisation indices were better for animals reared on pellets in bare-bottom tanks than in earthen environments, indicating some degree of pellet wastage when natural feeds are simultaneously present. High apparent food conversion ratios and low protein efficiency ratios occurred when the forage crop was provided. A considerable quantity of the dry matter and protein content of the forage crop was either inefficiently utilised or directed into other production pathways. Sowing a forage crop into pond microcosms to which a pelleted diet was also provided, did not enhance growth performance. Pelleted feed inputs at a rate of approximately 129g m-2 to 198g m-2 (dry matter) and 38g -2 to 64g m-2 (protein) over 70-100 d resulted in acceptable growth and feed utilisation indices for animals reared in ponds and pond microcosms. Forage crop inputs of approximately 533g m-2 to 680g m-2 (as dry matter) or 84g m-2 to 177g m-2 (as protein) over a 70-100 d period produced reasonable growth rates but poor feed utilisation indices. Low inputs of dry matter (from 113-296g m-2) and protein (from 24-54g m-2) from clover were sufficient to maintain high growth rates in pond microcosms for around 28 d. In ponds, a very low level of 21g m-2 (dry matter) and 4.3g m-2 (protein) was sufficient for around 3 weeks. Forage depletion appeared to occur beyond week 3-4 and was probably a major growth limiting factor. The mean hepatosomatic index (HSI) was 9.44, 7.68, and 6.79 for the pellet, crop, and control ponds respectively. The relationship between hepatopancreas weight and overall animal weight was significantly different between treatments. The hepatopancreas of pellet-fed animals had the highest %lipid and lowest %ash, %protein, %carbohydrate and %moisture content. In terms of absolute quantities, the only major difference in hepatopancreas composition between treatments occurred for lipid and dry matter content. The hepatopancreas of the pellet-fed animals was a cream/cream-yellow colour and was very fragile, whereas in the other ponds it was a more ‘natural’ bright yellow colour and was structurally more robust. C. destructor has a capacious foregut, being approximately 5 times the volume of similar sized Penaeids. The foregut volume (V, ml) of the yabby is related to animal weight (W, g) according to V = 0.048 W0.9543. Animals that were starved for 96 h and then fed diet B2 were almost completely foil after 30 min. The ‘apparent enzymatic response’ of animals fed various natural and artificial diets in tanks was evaluated. Nutrient processing time and the enzymatic response following ingestion appeared to be regulated by the chemical and physical properties of the diet. For the natural feeds, foregut protein was 1.2% higher (for zooplankton) and up to 300% higher (for detritus) than dietary protein, whereas ash was 7.5% higher (zooplankton) and 46-63% lower (detritus) than dietary ash. For animals fed diet B2 after 48 h without food, FF was approximately half that of 96 h starved animals after a similar feeding period but foregut protein and ash contents were similar. Finally, the physiological and morphological attributes elucidated in this study are discussed with reference to the ecology of the yabby. High growth rates, excellent feed utilisation indices and high digestibility coefficients for a wide range of diet-types illustrate nutritional flexibility. A capacious foregut, a large hepatopancreas with a high energy storage capacity, the ability to partition and preferentially excrete the low nutrient value inorganic component of the diet, the capacity to alter body form, nutrient processing time and enzymatic secretions in relation to diet-type, and modified behaviour according to feed availability also demonstrate plasticity/adaptability/flexibility. The combined effect of these important characteristics ensures survival in environments that may be adverse and highly variable in terms of nutrient availability. Collectively the morphological and digestive traits elucidated in this study reflect the generalist-type nature of C destructor and indicate that a polytrophic classification still seems appropriate. Several priority areas for further nutrition research are identified and recommendations are made regarding the best-practices to use in the commercial culture of the yabby. Of paramount importance is the further clarification of the nutritional requirements and feeding preferences of animals in various phases of development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was conducted to investigate the possible influence of body size and composition, errors in portion size estimation, level of satisfaction with body size and degree of dietary restraint on the level of reported food intake obtained using both a food frequency questionnaire and weighed food record. The findings suggest that in dietary studies based on weighed food records, 'weight consciousness', as determined using a measure of dietary restraint, could be more important than influence of body size in determining the level of reported intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osmiophilic bodies are membrane-bound vesicles, found predominantly in Plasmodium female gametocytes, that become progressively more abundant as the gametocyte reaches full maturity. These vesicles lie beneath the subpellicular membrane of the gametocyte, and the release of their contents into the parasitophorous vacuole has been postulated to aid in the escape of gametocytes from the erythrocyte after ingestion by the mosquito. Currently, the only protein known to be associated with osmiophilic bodies in Plasmodium falciparum is Pfg377, a gametocyte-specific protein expressed at the onset of osmiophilic body development. Here we show by targeted gene disruption that Pfg377 plays a fundamental role in the formation of these organelles, and that female gametocytes lacking the full complement of osmiophilic bodies are significantly less efficient both in vitro and in vivo in their emergence from the erythrocytes upon induction of gametogenesis, a process whose timing is critical for fertilization with the short-lived male gamete. This reduced efficiency of emergence explains the significant defect in oocyst formation in mosquitoes fed blood meals containing Pfg377-negative gametocytes, resulting in an almost complete blockade of infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Long-distance dispersal (LDD) is important in plants of dynamic and ephemeral habitats. For plants of dynamic wetland habitats, waterfowl are generally considered to be important LDD vectors. However, in comparison to the internal (endozoochorous) dispersal of terrestrial plants by birds, endozoochorous dispersal of wetland plants by waterfowl has received little attention. We quantified the capacity for endozoochorous dispersal of wetland plants by waterfowl and identified the mechanisms underlying successful dispersal, by comparing the dispersal capacities of a large number of wetland plant species.

2. We selected 23 common plant species from dynamic wetland habitats and measured their seed characteristics. We fed seeds of all species to mallards (Anas platyrhynchos), a common and highly omnivorous duck species, and quantified seed gut survival, gut passage speed and subsequent germination. We then used a simple model to calculate seed dispersal distances.

3. In total 21 of the 23 species can be dispersed by mallards, with intact seed retrieval and subsequent successful germination of up to 32% of the ingested seeds. The species that pass fastest through the digestive tract of the mallards are retrieved in the greatest numbers (up to 54%) and germinate best (up to 87%). These are the species with the smallest seeds. Seed coat thickness plays only a minor role in determining intact passage through the mallard gut, but determines if ingestion enhances or reduces germination in comparison to control seeds.

4. Model calculations estimate that whereas the largest seeds can hardly be dispersed by mallards, most seeds can be dispersed up to 780 km, and the smallest seeds up to 3000 km, by mallards during migration.

5. Synthesis. This study demonstrates the mechanism underlying successful endozoochorous dispersal of wetland plant seeds by mallards: small seed size promotes rapid, and hence intact and viable, passage through the mallard gut. Mallards can disperse wetland plant seeds of all but the largest-seeded species successfully in relatively large numbers (up to 32% of ingested seeds) over long distances (up to thousands of kilometres) and are therefore important dispersal vectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The potential for seed dispersal by fish (ichthyochory) is likely to vary within aquatic plant species, depending on intraspecific variation in phenotypic seed traits.

2. We studied the effect of seed size variation within the unbranched burreed (Sparganium emersum) on the potential for internal dispersal by the common carp (Cyprinus carpio), by feeding them light (< 10 mg), medium (10–20 mg) and heavy ( > 20 mg) seeds, seed mass being positively related to seed size.

3. We hypothesized: (i) that ingestion, retention time, survival during gut passage and viability after gut passage of S. emersum seeds would be affected by seed size; and (ii) that this would translate into intraspecific variation in dispersal probability and dispersal distance among seed size categories.

4. Ingestion was negatively related to seed size, while survival during gut passage was positively related to seed size. Seed viability after gut passage was not affected by seed size. Since the negative effect of ingestion was counterbalanced by an equally strong but positive effect on seed survival, the probability of dispersal did not differ between the tested seed-size categories.

5. The time that seeds remained in the digestive tract of carp did not differ between seed sizes, suggesting equal potential dispersal distances for all seeds. Based on optimum swimming speeds of carp, ranging from 0·9 to 1·8 km h−1, maximum dispersal distances will most likely range from 13·5 to 27 km.

6. This study highlights the importance of studying all stages of the endozoochorous dispersal process in order to estimate the effect of a phenotypic seed trait on plant dispersal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The potential for seed dispersal by fish (ichthyochory) will vary among aquatic plants because of differences in seed size and morphology.

2. To examine how seed morphology influences the probability of dispersal by the common carp (Cyprinus carpio), we studied seed ingestion, retention time and subsequent egestion and germination of seeds of Sparganium emersum and Sagittaria sagittifolia, two aquatic plant species with similar sized but morphologically different seeds.

3. We compared dispersal probabilities between the two plant species, in which the probability of dispersal is assumed to be a function of the probabilities of seed ingestion, egestion and germination, and the dispersal distance is assumed to be a function of seed egestion rate over time.

4. We found that, although the soft seeds of S. sagittifolia had an approximately 1.5 times higher probability of being ingested by the carp than the hard seeds of S. emersum (83.15% ± 1.8% versus 56.16% ± 2.7%, respectively), the latter had an almost twofold higher probability of surviving the passage through the digestive tract (38.58% ± 2.7% versus 20.97% ± 1.5%, respectively). Patterns of seed egestion over time did not differ between the two plant species, despite the difference in seed morphology. Gut passage had a different effect on seed germination between plant species. Compared with non-ingested controls, seeds of S. emersum showed a 12.6% increase in germination and a 2.1 day acceleration in germination rate, whereas seeds of S. sagittifolia displayed a 47.3% decrease and 5.1 day delay, respectively.

5. Our results suggest that seed morphology affects the dispersal probability and postdispersal establishment, but not the dispersal distance, of aquatic plants that are dispersed by fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Canola oil shortens the life span of stroke-prone spontaneously hypertensive (SHRSP) rats compared with rats fed soybean oil when given as the sole dietary lipid source. One possible mechanism leading to the damage and deterioration of organs due to canola oil ingestion is oxidative stress. This study investigated the effect of canola oil intake on oxidative stress in this animal model.
Method: Male SHRSP rats, were fed a defatted control diet containing 10% wt/wt soybean oil or a defatted treatment diet containing 10% wt/wt canola oil, and given water containing 1% NaCl. Blood pressure was measured weekly. Blood was collected prior to beginning the diets and at the end of completion of the study for analysis of red blood cell (RBC) antioxidant enzymes, RBC and plasma malondialdehyde (MDA), plasma 8- isoprostane and plasma lipids.
Results: Canola oil ingestion significantly decreased the life span of SHRSP rats compared with soybean oil, 85.8 ± 1.1 and 98.3 ± 3.4 days, respectively. Systolic blood pressure increased over time with a significant difference between the diets at the 6th week of feeding. Canola oil ingestion significantly reduced RBC superoxide dismutase, glutathione peroxidase and catalase activities, total cholesterol and low-density lipoprotein cholesterol compared with soybean oil. There were no significant differences in RBC MDA concentration between canola oil fed and soybean oil fed rats. In contrast, plasma MDA and 8-isoprostane concentration was significantly lower in the canola oil group compared to the soybean oil group.
Conclusion: In conclusion, canola oil ingestion shortens the life span of SHRSP rats and leads to changes in oxidative status, despite an improvement in the plasma lipids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results from the thesis confirm that canola oil ingestion shortens the lifespan of stroke prone rats. This life shortening effect associated with canola oil may be due to negative changes in the level of free radicals, antioxidants and blood fats. The situation is even worse when canola oil and salt are combined in the diet as blood vessel function is impaired.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cane Toads (Rhinella marina; hereafter 'toads') are large, toxic American anurans that were introduced to Australia in 1935. Research on their ecological impact has focussed on the lethal ingestion of toxic toads by native frog-eating predators. Less attention has been paid to the potential impacts of Cane Toads as predators, although these large anurans sometimes eat vertebrates, such as nestling birds and bird eggs. We review published and unpublished data on interactions between Cane Toads and Australian ground-nesting birds, and collate distributional and breeding information to identify the avian taxa potentially at risk of having eggs or chicks eaten by Cane Toads. Cane Toads are currently sympatric with 80 ground-nesting bird species in Australia, and five additional species of bird occur within the predicted future range of the toad. Although many species of bird are potentially at risk, available data suggest there is minimal impact of Cane Toads on ground-nesting species. Future research could usefully address both direct and indirect impacts of the invasion by Cane Toads, ideally with detailed field observations of these impacts on nesting success and of changes in bird breeding success as a function of invasion by toads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myths about invasive species are widespread in the general community, even when contrary to scientific evidence. Public revulsion against invasive cane toads (Bufo marinus) in Australia has encouraged the belief that toads pose a significant risk to domestic poultry, by poisoning fowls that eat toads or that drink water contaminated by toads. Although discredited by scientists in 1938, within 2 years of the toads’ introduction to Australia, the myth continues to flourish. We conducted experimental trials to evaluate the vulnerability of chickens to toad-contaminated water, and to toad ingestion. No ill effects were seen, with one chicken consuming 45 small toads without falling ill. Thus, available evidence suggests that cane toads do not imperil domestic poultry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the variation in foraging movements in a population of young-of-the-year (YOY) brook charr living in the near-shore littoral zone of a lake. By repeating the methodology of an earlier stream study, we made direct comparisons between data from lake and stream populations. In general, the pattern of variation in foraging movements was similar between the two sites with greater variability and activity observed in the lake population. The dichotomous nature of the proportion of time spent moving in the stream was also observed in the lake population but in a reversal of the stream pattern. Charr that moved constantly while foraging represented the largest movement category in the lake. In general, variation in foraging movements were more strongly related to the rate of prey rejection, whereas environmental factors, such as distance from shore, submerged objects, and the amount of overhead riparian cover, were more strongly related to prey ingestion. This last finding directly contrasts with that found in the stream literature for YOY charr in still water where ingestion rate, as estimated using feeding attempt rate, increases with the mobility of YOY charr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to determine if 50 days of canola oil intake in the absence or presence of salt loading affects: (1) antioxidant and oxidative stress markers, (2) aortic mRNA of NADPH oxidase (NOX) subunits and superoxide dismutase (SOD) isoforms and (3) endothelial function in SHRSP rats. SHRSP rats were fed a diet containing 10 wt/wt% soybean oil or 10 wt/wt% canola oil, and given tap water or water containing 1% NaCl for 50 days. Without salt, canola oil significantly increased RBC SOD, plasma cholesterol and triglycerides, aortic p22phox, NOX2 and CuZn-SOD mRNA, and decreased RBC glutathione peroxidase activity. With salt, canola oil reduced RBC SOD and catalase activity, LDL-C, and p22phox mRNA compared with canola oil alone, whereas plasma malondialdehyde (MDA) was reduced and RBC MDA and LDL-C were higher. With salt, the canola oil group had significantly reduced endothelium-dependent vasodilating responses to ACh and contractile responses to norepinephrine compared with the canola oil group without salt and to the WKY rats. These results indicate that ingestion of canola oil increases O2 - generation, and that canola oil ingestion in combination with salt leads to endothelial dysfunction in the SHRSP model.