57 resultados para T-strip feed


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In January 2014, approximately 9 months following the initial detection of porcine epidemic diarrhea (PED) in the USA, the first case of PED was confirmed in a swine herd in south-western Ontario. A follow-up epidemiological investigation carried out on the initial and 10 subsequent Ontario PED cases pointed to feed as a common risk factor. As a result, several lots of feed and spray-dried porcine plasma (SDPP) used as a feed supplement were tested for the presence of PEDV genome by real-time RT-PCR assay. Several of these tested positive, supporting the notion that contaminated feed may have been responsible for the introduction of PEDV into Canada. These findings led us to conduct a bioassay experiment in which three PEDV-positive SDPP samples (from a single lot) and two PEDV-positive feed samples supplemented with this SDPP were used to orally inoculate 3-week-old piglets. Although the feed-inoculated piglets did not show any significant excretion of PEDV, the SDPP-inoculated piglets shed PEDV at a relatively high level for ≥9 days. Despite the fact that the tested PEDV genome positive feed did not result in obvious piglet infection in our bioassay experiment, contaminated feed cannot be ruled out as a likely source of this introduction in the field where many other variables may play a contributing role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the material birefringence in a polymer strip waveguide which originates from thermal stress during the fabrication process. The stress is estimated through a comprehensive numerical study based on a realistic finite element model. The characteristics of birefringence are obtained in a generalized form and expressed by an empirical formula, which is applicable to various polymer materials. The developed formula can be employed to specify the photo-elastic birefringence of a polymer strip channel only by knowing the birefringence in its planar film. This will eliminate the necessity of extensive numerical analysis of thermal stress in such polymer waveguides, and accordingly help the management of stress-induced effects efficiently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Strip casting is a rapid, environment friendly technology for manufacturing thin sheets of steel directly from molten metal. Research presented in this thesis examines the effect of atomic location, cluster size and composition on internal microstructure development during strip casting. Current research potentially leads to green manufacturing of steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of copper on as-cast structure, recrystallization and precipitation kinetics of strip cast low carbon steel were investigated. As-cast microstructure mainly consists of polygonal ferrite and Widmanstatten ferrite. Recrystallization responses were strongly dependent on initial microstructure and Cu content. Precipitation strengthening was observed in high copper content alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of rapid solidification processes such as direct strip casting (DSC) is a good way to refine the Fe-intermetallics and decrease their detrimental effects. DSC creates out-ofequilibrium supersaturated microstructures. In this work, we explore the precipitation phenomena in direct strip cast Al-Fe and Al-Cu-Fe alloys and related corrosion and mechanical properties. The precipitates are characterised with differential scanning calorimetry and transmission electron microscopy. The corrosion performances are evaluated with immersion tests and weight loss measurements and the yield strength and ductility are estimated with tensile tests. A strong correlation between the microstructure and the bulk properties is revealed with a significant improvement of properties of DSC alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the impact of coiling temperature and duration on the phase transformation and precipitation behavior of a low carbon and low niobium direct strip cast steel. Coiling was performed at three carefully chosen temperatures: (1) in the ferrite (600°C), (2) during the austenite decomposition (700°C) and (3) in the austenite (850°C). The coiling conditions were found to strongly affect the final microstructure and hardness response, thus highlighting the necessity to judiciously design the coiling treatment. Optical microscopy, and scanning and transmission electron microscopy were used to characterize the microstructural constituents (polygonal ferrite, bainite and pearlite) and the NbC precipitates. Vickers macrohardness measurements are utilized to quantify the mechanical properties. The differences in hardening kinetics for the three different temperatures are shown to come from a complex combination of strengthening contributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe3C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANS in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a simulated coiling treatment on a strip cast Nb-containing steel has been investigated. A lath ferritic supersaturated microstructure was observed in the as-cast condition with no coiling. The microstructure remained lath like during coiling at high temperature (850 °C) and the formation of chemically complex Nb-rich precipitates containing C, N, Si and S was observed. Coiling at an intermediate temperature (700 °C) caused the formation of polygonal ferrite with a dendritic morphology due to chemical micro-segregation. The polygonal ferrite contained Nb(C,N) precipitates. The microstructure remained lath like at the lowest coiling temperature (600 °C). In the latter case the precipitation of Nb-rich clusters was observed, and atom probe tomography revealed them to be ∼85% Fe. Small angle neutron scattering and transmission electron microscopy were used to quantify precipitation kinetics during coiling and the mechanical properties were evaluated with a shear punch apparatus. A yield strength model was developed to describe the observed mechanical behaviour, and this showed that the two largest contributors to strength were the bainitic microstructure and the Nb-rich precipitates. Strategies to further strengthen these materials are suggested.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olive leaves are the most abundant agricultural waste source rich in polyphenolics. Due to the numerous health benefits associated with these compounds, the interest in recovering polyphenols from olive leaves has increased in the scientific community over the last decade. Recent studies have focused on improved extraction techniques and processing methods that are most suited for agro-biological industries involved in the development of nutraceutical and functional products. The major problems in olive leaves processing include bitter taste and the low stability of various phenolic compounds. Oleuropein and hydroxytyrosol are the most important phenolic compounds extracted from olive leaves. The present review highlights the importance of olive leaves, their composition, preparation methods, major phenolic compounds, and commercial applications. This review article focuses on integrating studies on olive leaf extract (OLE) pertinent to nutrition, health, and beauty. The different board categories of delivery systems available for the encapsulation of OLE are given. These novel delivery systems could improve fortification, supplementation, and dietary diversification in food and pharmaceutical products.