51 resultados para Static Nonlinearity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach was used to produce an ultrafine grain structure in low carbon steels with a wide range of hardenability. This included warm deformation of supercooled austenite followed by reheating in the austenite region and cooling (RHA). The ultrafine ferrite structure was independent of steel composition. However, the mechanism of ferrite refinement changed with the steel quench hardenability. In a relatively low hardenable steel, the ultrafine structure was produced through dynamic strain induced transformation, whereas the ferrite refinement was formed by static transformation in steels with high quench hardenability. The use of a model Ni-30Fe austenitic alloy revealed that the deformation temperature has a strong effect on the nature of the intragranular defects. There was a transition temperature below which the cell dislocation structure changed to laminar microbands. It appears that the extreme refinement of ferrite is due to the formation of extensive high angle intragranular defects at these low deformation temperature that then act as sites for static transformation. © 2008 World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lab-based electrolytic-cell is designed to analyze the effect of external magnetic field on bubble evolution underneath an anode surface. Buckingham Pi theorem is used to provide a complete list of dimensionless parameters for a typical cell configuration. There is an increase in bubble size and the number of bubbles with time. The hydrodynamic convection is apparent due to the effect of electrolyte flow caused by swarm of bubbles rising along the anode surface. The image sequence shows that swarm of bubbles exhibit a swirling flow-field in the presence of the magnetic field. The coalescence process intensifies in an area where magnetic field is higher. As a consequence, bubbles are swept away by the magneto-hydrodynamic (MHD) convection. These results suggest that a magnetic field causes remarkable improvement on the surface coverage of the anode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-Walled honeycombs have been extensively investigated and they are often used as sandwich panels to enhance the energy absorption in many applications including vehicles. In this study, axial compressive tests at three different velocities (3, 30 and 300 mm/min, respectively) by using an MTS machine were conducted with both empty and hybrid aluminium tubes filled with aluminium honeycomb. The aim of this work is to study the contribution of aluminium honeycomb in square hybrid tubes in terms of the deformation mode and energy absorption. Square aluminium tubes made of AA 6060-T5 with two different side lengths, 40 and 50 mm, were used. Two types of honeycombs made of AA 5052 with different cell wall thicknesses were used in this study. The force and displacement of the tubes were recorded during the test. The specific energy absorption (SEA) of honeycomb-Filled tubes was compared with the sum of the SEA of an empty tube and honeycomb. It was noticed that the SEA of the hybrid tubes depended on the honeycomb density and the loading velocity within the velocity range studied. © (2015) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tool deflection during milling operation leads to dimensional error, decreasing surface quality and increasing rejection rate. In this study, tool deflection during the milling of the inner surfaces of Ti–6Al–4V prosthetic acetabular shell produced by selective laser melting (SLM) was modelled. The first purpose of this research is to provide a general static cutting tool deflection model for ball nose cutters where deviation of machine components and tool holder are so small as to be considered negligible. This is because the values of machine component and tool holder deflection were lower than standard tolerances (10 μm) and found to be lower than 1/15 of tool deflection. The second and third objectives of this work involve calculating contact surfaces by determining workpiece and tool geometry and choosing second moment of inertia using a novel cross section method (CSM). Static models for three quasi-analytical methods (QAM) that are simple cantilever beam model (SCBM), two-section model (TWSM) and our three section model (THSM) are presented. THSM showed high accuracy which was validated by 3D finite element method (FEM3D) and experimental measurements. The accuracy of tool deflection calculation using THSM by computing, shank, flute and ball head deflection and also utilizing CSM to determine second moment of inertia showed notable improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, for the first time, electric vehicles are used for both the primary and secondary frequency controls to support power plants to rapidly suppress fluctuations in the system frequency due to load disturbances. Via networked control and wide-area communication infrastructures, multiple interval time-varying delays exist in the communication channels between the control center, power plant, and an aggregation of electric vehicles. By coordinating batteries’ state of charge control, the behaviors of the vehicle owners and the uncertainties imposed by the changes of the batteries’ state of charge are taken intoconsideration. A power system model incorporating multiple time-varying delays and uncertainties is first proposed. Then, a robust static output feedback frequency controller is designed to guarantee the resulting closed-loop system stable with an H∞ attenuation level. By utilizing a novel integral inequality, namely refined-Jensen inequality, and an improved reciprocally convex combination, the design conditions are formulated in terms of tractable linear matrix inequalities which can be efficiently solved by various computational tools. The effectiveness of the proposed control scheme is verified by extensive simulations.