71 resultados para Ship based meteorological sensor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statistical time series methods have proven to be a promising technique in structural health monitoring, since it provides a direct form of data analysis and eliminates the requirement for domain transformation. Latest research in structural health monitoring presents a number of statistical models that have been successfully used to construct quantified models of vibration response signals. Although a majority of these studies present viable results, the aspects of practical implementation, statistical model construction and decision-making procedures are often vaguely defined or omitted from presented work. In this article, a comprehensive methodology is developed, which essentially utilizes an auto-regressive moving average with exogenous input model to create quantified model estimates of experimentally acquired response signals. An iterative self-fitting algorithm is proposed to construct and fit the auto-regressive moving average with exogenous input model, which is capable of integrally finding an optimum set of auto-regressive moving average with exogenous input model parameters. After creating a dataset of quantified response signals, an unlabelled response signal can be identified according to a 'closest-fit' available in the dataset. A unique averaging method is proposed and implemented for multi-sensor data fusion to decrease the margin of error with sensors, thus increasing the reliability of global damage identification. To demonstrate the effectiveness of the developed methodology, a steel frame structure subjected to various bolt-connection damage scenarios is tested. Damage identification results from the experimental study suggest that the proposed methodology can be employed as an efficient and functional damage identification tool. © The Author(s) 2014.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

  Remote human activity monitoring is critical and essential in physiotherapy with respect to the skyrocketing healthcare expenditure and the fast aging population. One of frequently used method to monitor human activity is wearing inertial sensors since it is low-cost and accurate. However, the measurements of those sensors are able only to estimate the orientation and rotation angles with respect to actual movement angles, because of differences in the body’s co-ordination system and the sensor’s co-ordination system. There were numerous studies being conducted to improve the accuracy of estimation, though there is potential for further discussions on improving accuracy by replacing heavy algorithms to less complexity. This research is an attempt to propose an adaptive complementary filter for identifying human upper arm movements. Further, this article discusses a feasibility of upper arm rehabilitation using the proposed adaptive complementary filter and inertial measurement sensors. The proposed algorithm is tested with four healthy subjects wearing an inertial sensor against gold standard, which is the VICON system. It demonstrated root mean squared error of 8.77◦ for upper body limb orientation estimation when compared to gold standard VICON optical motion capture system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Location service provides location information of robots to sensors, to enable event reporting. Existing protocols apply partial flooding to trace robots, leading to poor scalability. We propose a novel scalable location service, which applies hierarchical rings to update robot location and guide routing toward it. Each mobile robot creates a set of hierarchical update rings of doubling radii. Whenever the robot leaves its k-th ring, it updates its new location to sensors along its newly defined k-th ring, and re-defines all smaller rings for future decisions. When a sensor needs to route to the mobile robot, it starts searching from its smallest ring and sends location query to the sensors along the ring. If the query fails, the search then extends to the next larger ring, until it intersects an existing update ring, from which the search can be directed towards reported center. The location of destination is updated whenever another more recent ring is intersected. Our scheme guarantees message delivery if robot remains connected to sensors during its move. The theoretical analysis and simulation results demonstrate better scalability than previous protocols for the similar goal. © 2014 IEEE.