114 resultados para Severe Plastic-Deformation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work focuses on the deformation behavior of an ultra-fine grained Al-Mg-Si alloy processed by equal channel angular pressing over a wide range of temperatures and strain rates. The effect of temperature and strain rate on the homogeneity of plastic deformation, the evolution of microstructure, the strain rate sensitivity and the underlying deformation mechanisms are investigated. It is demonstrated that the localization of plastic deformation at the micro scale is triggered by grain boundary sliding due to grain boundary sliding due to grain boundary diffusion. The contributions of different deformation mechanisms during the plastic deformation of the material are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The deformation and fracture characteristics of a low carbon Si–Mn steel with ferrite/bainite dual–phase structure were investigated by thermo–mechanical controlled process (TMCP). The results showed that the curves of the instantaneous work–hardening factor n* value versus true strain ε are made up with three stages during uniform plastic deformation: n* value is relatively higher at stage I, decreases slowly with ε in stage II, and then decreases quickly with ε in stage III. Compared tothe equiaxed ferrite/bainite dual–phase steel, the quasi–polygonal ferrite/bainite dual–phase steel shows higher tensile strength and n*value in the low strain region. The voids or micro–cracks formed not only at ferrite–bainite interfaces but also within ferrite grains in the necked region, which can improve the property of resistance to crack propagation by reducing local stress concentration of the crack tips.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scanning white beam X-ray microdiffraction has been used to study the heterogeneous grain deformation in a polycrystalline Mg alloy (MgAZ31). The high spatial resolution achieved on beamline 7.3.3 at the Advanced Light Source provides a unique method to measure the elastic strain and orientation of single grains as a function of applied load. To carry out in-situ measurements a light weight (~0.5kg) tensile stage, capable of providing uniaxial loads of up to 600kg, was designed to collect diffraction data on the loading and unloading cycle. In-situ observation of the deformation process provides insight about the crystallographic deformation mode via twinning and dislocation slip.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Development of a digital material representation (DMR) model of dual phase steel is presented within the paper. Subsequent stages involving generation of a reliable representation of microstructure morphology, assignment of material properties to component phases and incorporation of the model into the commercial finite element software are described within the paper. Different approaches used to recreate dual phase morphology in a digital manner are critically assessed. However, particular attention is placed on innovative identification of phase properties at the micro scale by using micro-pillar compression tests. The developed DMR model is finally applied to model influence of micro scale features on failure initiation and propagation under loading conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microcompression tests were performed on monolithic Cu and Fe thin films and a Cu/Fe multilayer that had each individual layer of 200 nm thick, to understand the mechanical behaviour of multiple nanolayers. The micron-sized pillars were prepared by focused-ion beam (FIB) technique and compressed with a flat punch in a nanoindenter. The flow curves of the monolithic Cu and Fe thin films and Cu/Fe multilayer were extracted from the microcompression tests. The monolithic Cu thin film bulges in the top region of the pillar, while the Fe thin film cracks due to its columnar grain structure. For the Cu/Fe multilayer, the ductile Cu layers accommodate the majority of plastic deformation upon compression, while cracking in the Fe layers leads to the failure of the multilayer. Finite element models of microcompression tests were also developed to provide insights into the deformation behaviours of the multilayer and monolithic thin films. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper equal channel angular extrusion with back pressure was used to compact Ti-6Al-4V powder at 400 °C, achieving relative densities of 98.3-98.6% and green strengths up to 750 MPa. The novelty of the approach arises from the notion that severe shear deformation is an important factor for consolidation. Improved compaction is related to enhanced self-diffusion through the creation of additional diffusion paths (defects) and the imposed hydrostatic pressure. The role of deformation mechanisms in improving compaction is discussed. © 2008 Acta Materialia Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plastic zones and associated deformations ahead of a fatigue crack are well established nowadays. In-depth plane strain elasto-plastic finite element analysis is conducted in this investigation to understand the nature of cyclic plastic deformation and damage around soft and hard elliptical inclusions. Similar to fatigue crack tip, cyclic/reverse plastic zone and monotonic plastic zone are visible for soft elliptical inclusion. In the cyclic plastic zone, low cycle fatigue is the dominant cyclic deformation mode during symmetric load cycling, while ratcheting is dominant during asymmetric load cycling. The size of cyclic plastic zone depends upon the amplitude of remote stress while, the size of monotonic plastic zone depends upon the maximum remote stress. The size of monotonic plastic zone is equal to cyclic plastic zone during symmetric load cycling. The shape and size of plastic zones also depend upon the orientation of the soft inclusion. Cyclic plastic damage progression in the cyclic plastic zone for soft (MnS) inclusion is significant, while no cyclic plastic zone is visible for hard inclusion (Al2O3).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the major challenges in assessing the mechanical properties of recovery annealed steel is the strain localization that occurs almost immediately on the formation of the first Lüders band, such that no or limited propagation of the Lüders band occurs along the tensile coupon. The stress raiser associated with the geometry of the standard tensile coupon means that this plastic deformation is often completely outside the standard extensometers on the coupon. Hence, no strain is measured during the test. While this is not important for assessing the tensile strength of the steel, it does mean that the strain related properties, such as the elastic limit of the steel, cannot be measured using standard testing techniques.This work addresses this issue by examining three techniques for ensuring that the strain occurs inside the extensometer. It is shown that the best technique is the extended extensometer, where the gauge length covers slightly more than the tensile coupon parallel length. While this leads to some variation in the width of the material being measured, compensation can be be made by adjusting the strain to correct the Young's Modulus.This technique has direct implications not just for recovery annealed steels, but for other high strength, low work hardening materials such as ultrafine ferrite. A particular requirement of these high strength steels in structural applications is a high elastic limit; hence, measurement of the strain related properties for these high strength materials must be considered vital in their mechanical assessment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent experimental research indicates that superelastic shape memory alloy nickel–titanium (NiTi) is superior to stainless steel against wear and could be applied in tribological engineering. It is believed that the super wear resistance of shape memory alloys is mainly due to the recovery of the superelastic deformation. Our recent wear study indicates that wear rate is very sensitive to the maximum contact pressure. In the present investigation, which involves applying Hertz contact theory and the finite element method, the wear behaviour of shape memory alloys is examined against that of stainless steels through analyzing the maximum contact pressure and the plastic deformation. Our investigation indicates that the contribution of superelasticity to the high wear resistance of NiTi is directly linked to the low transformation stress and the large recoverable transformation strain. Furthermore, the low Young's modulus of this alloy also plays an important role to reduce the maximum contact pressure and therefore reduce the wear rate. Additionally, the high plastic yield strength of transformed martensite NiTi enhances its wear resistance further.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A numerical study is presented in this paper to investigate the energy absorption of foam-filled aluminium tubes during crushing. The post-buckling mode of the foam-tube structures has been successfully simulated. The predicted compressive load-displacement is in a good agreement with experimental results. The energy absorption ability of the composite structure due to plastic deformation in a crushing process is evaluated by comparison with the tube structure without foam. The results indicate that the energy absorption of a foam-filled tube structure is superior to the tube without foam. The influences of the friction and the geometric parameters of the structure on the energy absorption have also been investigated. Results from this study will assist automotive industry to design crashworthy components based on foam-filled tubes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of prestraining (PS) and bake hardening (BH) on the microstructures and mechanical properties has been studied in transformation-induced plasticity (TRIP) and dual-phase (DP) steels after intercritical annealing. The DP steel showed an increase in the yield strength and the appearance of the upper and lower yield points after a single BH treatment as compared with the as-received condition, whereas the mechanical properties of the TRIP steel remained unchanged. This difference appears to be because of the formation of plastic deformation zones with high dislocation density around the “as-quenched” martensite in the DP steel, which allowed carbon to pin these dislocations, which, in turn, increased the yield strength. It was found for both steels that the BH behavior depends on the dislocation rearrangement in ferrite with the formation of cell, microbands, and shear band structures after PS. The strain-induced transformation of retained austenite to martensite in the TRIP steel contributes to the formation of a complex dislocation structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent successful development of the equal channel angular pressing (ECAP) process in metals provides a feasible solution to produce ultra-fine or nano-grained bulk: materials with tailored material properties. However, ECAP is difficult to scale up commercially due to excessive load requirements. In this paper, a new Multi-ECAP process with die rotation is considered to obtain ultra-fine grain structured materials under a moderate deformation force. It is shown that an addition of torsion results in a reduction in the pressing force and an increase in severity of plastic deformation. An analysis using the upper bound method is found to be useful in predicting the pressing load and flow pattern of ECAP with and without rotational dies. Solutions are obtained for different inclined channel angles under different angular velocities of dies. Relative pressures are presented and some computed solutions are compared with those found by FEM simulation. The theoretical predictions of the pressing load are in good agreement with the simulation results. The amount of plastic deformation is determined by the inclined angle between the two intersecting channels, and the velocity ratio between the angular velocity of dies and the normal component of the punch velocity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Burnishing is a surface modification process, which involves plastic deformation of the material at the surface of the component due to the application a highly polished and hard roller, under pressure. This results in the improvement of the surface finish of the component and induces residual compressive stresses on the surface of the component. The present work deals with the optimization of the burnishing force for the best surface finish, at constant speed and feed, for Aluminium and Mild steel workpieces. A 3dimensional finite element model is proposed for the simulation of the burnishing process, and the analysis is carried out at the optimum force determined experimentally. The induced compressive stress in the components is determined from the finite element analysis and this value is then compared with the results obtained from X-ray diffraction technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Characteristics of the “contraction” twins, formed close to the fracture surface in Mg–3Al–1Zn alloy deformed in tension approximately perpendicular to the grain c-axes, are investigated using transmission electron microscopy. The grain c-axis contractions were largely accommodated by {1011}-{1012} source double-twins in a variant characterized by 38° ⟨1210⟩ source twin/matrix misorientation in conjunction with dislocation slip. A possible interpretation of the observed preference for this variant formation is given and some crystal plasticity modelling is performed to elucidate the matter.