66 resultados para Rutile TiO2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the fabrication and growth mechanism of net-shaped micropatterned self-organized thin-film TiO2 nanotube (TFTN) arrays on a silicon substrate are reported. Electrochemical anodization is used to grow the nanotubes from thin-film titanium sputtered on a silicon substrate with an average diameter of ?30 nm and a length of ?1.5 ?m using aqueous and organic-based types of electrolytes. The fabrication and growth mechanism of TFTN arrays from micropatterned three-dimensional isolated islands of sputtered titanium on a silicon substrate is demonstrated for the first time using focused-ion-beam (FIB) technique. This work demonstrates the use of the FIB technique as a simple, high-resolution, and maskless method for high-aspect-ratio etching for the creation of isolated islands and shows great promise toward the use of the proposed approach for the development of metal oxide nanostructured devices and their integration with micro- and nanosystems within silicon-based integrated-circuit devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The author's studied the photocatalytic properties of rational designed TiO2-ZnO hybrid nanostructures, which were fabricated by the site-specific deposition of amorphous TiO2 on the tips of ZnO nanorods. Compared with the pure components of ZnO nanorods and amorphous TiO2 nanoparticles, these TiO2-ZnO hybrid nanostructures demonstrated a higher catalytic activity. The strong green emission quenching observed from photoluminescence of TiO2-ZnO hybrid nanostructures implied an enhanced charge transfer/separation process resulting from the novel type II heterostructures with fine interfaces. The catalytic performance of annealing products with different TiO2phase varied with the annealing temperatures. This is attributed to the combinational changes in Egof the TiO2phase, the specific surface area and the quantity of surface hydroxyl groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xueyang’s PhD research focused on the semiconductive nanomaterials for the application of dye-sensitized solar cells. After four years diligent study, she successfully synthesized a novel nanomaterials with controllable morphology to promote the solar cell performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research intends to increase the photocatalytic efficiency of cotton fabrics coated with TiO2-based nanocomposites under illumination particularly visible light. The fabrics were functionalized using a low-temperature sol-gel method of TiO2/Metal/SiO2 nanocomposite systems. Integrating silica and noble metals into TiO2 sol was put forth for boosting its functionality. Three noble metals (gold (Au), platinum (Pt) and silver (Ag)) with four different concentrations were employed. The photocatalytic activity of the functionalized fabrics was assessed through coffee stain-removal test and photodecomposition of methylene blue (MB) under UV and visible light. The impact of coating layers on fabrics' hydrophilicity was analyzed through measuring the water contact angle as well as the water absorption time. The fabrics were characterized using XRD, SEM and EDS. It was corroborated that the presence of silica enhanced the self-stain-removal capability of fabrics under UV. Moreover, the self-cleaning property of fabrics improved under both UV and visible light after integrating the metals into the colloids. In the same line, the self-cleaning activity threshold of fabrics was shifted to visible region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel TiO2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO2 nanorods on TiO2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO2 nanorods had lower dye loading than TiO2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO2 nanorods received less resistance than that in TiO2 nanoparticle aggregation. By just applying a thin layer of TiO2 nanorods on TiO2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO2 nanoparticle layer covered with 3 μm thick TiO2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 The Textile Institute. This study intends to enhance the functionality of titanium dioxide (TiO2) nanoparticles applied to wool fabrics under visible light. Herein, TiO2, TiO2/SiO2, TiO2/Metal, and TiO2/Metal/SiO2 nanocomposite sols were synthesized and applied to wool fabrics through a low-temperature sol–gel method. The impacts of three types of noble metals, namely gold (Au), platinum (Pt), and silver (Ag), on the photoefficiency of TiO2 and TiO2/SiO2 under visible light were studied. Different molar ratios of Metal toTiO2 (0.01, 0.1, 0.5, and 1%) were employed in synthesizing the sols. Photocatalytic efficiency of fabrics was analyzed through monitoring the removal of red wine stain and degradation of methylene blue under simulated sunlight and visible light, respectively. Also, the antimicrobial activity against Escherichia coli (E. coli) bacterium and the mechanical properties of fabrics were investigated. Through applying binary and ternary nanocomposite sols to fabrics, an enhanced visible-light-induced self-cleaning property was imparted to wool fabrics. It was concluded that the presence of silica and optimized amount of noble metals had a synergistic impact on boosting the photocatalytic and antimicrobial activities of coated samples. The fabrics were further characterized using attenuated total reflectance, energy-dispersive X-ray spectrometry, and scanning electron microscopy images.