142 resultados para Resting energy expenditure


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The daily energy imbalance gap associated with the current population weight gain in the obesity epidemic is relatively small. However, the substantially higher body weights of populations that have accumulated over several years are associated with a substantially higher total energy expenditure (TEE) and total energy intake (TEI), or energy flux (EnFlux = TEE = TEI).
Objective: The objective was to develop an equation relating EnFlux to body weight in adults for estimating the rise in EnFlux associated with the obesity epidemic.
Design: Multicenter, cross-sectional data for TEE from doubly labeled water studies in 1399 adults aged 5.9 ± 18.8 y (mean ± SD) were analyzed in linear regression models with natural log (ln) weight as the dependent variable and ln EnFlux as the independent variable, adjusted for height, age, and sex. These equations were compared with those for children and applied to population trends in weight gain.
Results: ln EnFlux was positively related to ln weight (β = 0.71; 95% CI: 0.66, 0.76; R2 = 0.52), adjusted for height, age, and sex. This slope was significantly steeper than that previously described for children (β = 0.45; 95% CI: 0.38, 0.51).
Conclusions: This relation suggests that substantial increases in TEI have driven the increases in body weight over the past 3 decades. Adults have a higher proportional weight gain than children for the same proportional increase in energy intake, mostly because of a higher fat content of the weight being gained. The obesity epidemic will not be reversed without large reductions in energy intake, increases in physical activity, or both.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gull-billed Terns Gelochelidon nilotica wintering in Guinea Bissau mainly fed on fiddler crabs Uca tangeri and were occasionally seen feeding on fish and locusts. As fiddler crabs have a low energy content, terns need a large gross intake to meet daily energy demands. Fiddler crabs also have a low ratio of digestible flesh to exoskeleton, and therefore tern food intake may be limited by gut capacity. Activity budgets of Gullbilled Terns feeding on fiddler crabs showed that a considerable part of the time was spent resting. The duration of resting intervals increased with energy intake and was positively correlated with the metabolisable energy content of the crab eaten, suggesting that resting periods were required for a proper digestion. The poor quality of fiddler crabs was offset by high capture rates. So daily energy expenditure of the terns could easily be met by feeding on fiddler crabs. Even when resting pauses were included in foraging time, foraging for only 1.5 hours on fiddler crabs satisfied the terns’ daily energy demands. Instead, feeding on energy-rich fish would require about 2.5 hours to satisfy daily energy demands. Compared to the more specialised piscivorous Little Tern Sternula albifrons and Sandwich Tern Sterna sandvicensis, capture rate of fish was poor in Gull-billed Terns. From an energetic point of view, wintering Gull-billed Terns feeding on fiddler crabs seem to have an easy living in Guinea Bissau.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The majority of bird species studied to date have molt schedules that are not concurrent with other energy demanding life history stages, an outcome assumed to arise from energetic trade-offs. Empirical studies reveal that molt is one of the most energetically demanding and perplexingly inefficient growth processes measured. Furthermore, small birds, which have the highest mass-specific basal metabolic rates (BMRm), have the highest costs of molt per gram of feathers produced. However, many small passerines, including white-plumed honeyeaters (WPHE; Lichenostomus penicillatus), breed in response to resource availability at any time of year, and do so without interrupting their annual molt. We examined the energetic cost of molt in WPHE by quantifying weekly changes in minimum resting metabolic rate (RMRmin) during a natural-molt period in 7 wild-caught birds. We also measured the energetic cost of feather replacement in a second group of WPHEs that we forced to replace an additional 25% of their plumage at the start of their natural molt period. Energy expenditure during natural molt revealed an energy conversion efficiency of just 6.9% (±0.57) close to values reported for similar-sized birds from more predictable north-temperate environments. Maximum increases in RMRmin during the molt of WPHE, at 82% (±5.59) above individual pre-molt levels, were some of the highest yet reported. Yet RMRmin maxima during molt were not coincident with the peak period of feather replacement in naturally molting or plucked birds. Given the tight relationship between molt efficiency and mass-specific metabolic rate in all species studied to date, regardless of life-history pattern (Efficiency (%) = 35.720•10-0.494BMRm; r2 = 0.944; p =<0.0001), there appears to be concomitant physiological costs entrained in the molt period that is not directly due to feather replacement. Despite these high total expenditures, the protracted molt period of WPHE significantly reduces these added costs on a daily basis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth/survival trade-off is a fundamental aspect of life-history evolution that is often explained by the direct energetic requirement for growth that cannot be allocated into maintenance. However, there is currently no empirical consensus on whether fast-growing individuals have higher resting metabolic rates at thermoneutrality (RMRt) than slow growers. Moreover, the link between growth rate and daily energy expenditure (DEE) has never been tested in a wild endotherm. We assessed the energetic and survival costs of growth in juvenile eastern chipmunks (Tamias striatus) during a year of low food abundance by quantifying post-emergent growth rate (n = 88), RMRt (n = 66), DEE (n = 20), and overwinter survival. Both RMRt and DEE were significantly and positively related to growth rate. The effect size was stronger for DEE than RMRt, suggesting that the energy cost of growth in wild animals is more likely to be related to the maintenance of a higher foraging rate (included in DEE) than to tissue accretion (included in RMRt). Fast growers were significantly less likely to survive the following winter compared to slow growers. Juveniles with high or low RMRt were less likely to survive winter than juveniles with intermediate RMRt. In contrast, DEE was unrelated to survival. In addition, botfly parasitism simultaneously decreased growth rate and survival, suggesting that the energetic budget of juveniles was restricted by the simultaneous costs of growth and parasitism. Although the biology of the species (seed-storing hibernator) and the context of our study (constraining environmental conditions) were ideally combined to reveal a direct relationship between current use of energy and future availability, it remains unclear whether the energetic cost of growth was directly responsible for reduced survival.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. In a system where depletion drives a habitat shift, the hypothesis was tested that animals switch habitat as soon as the average daily net energy intake (or gain) drops below that attainable in the alternative habitat.

2. The study was performed in the Lauwersmeer area. Upon arrival during the autumn migration, Bewick's swans first feed on below-ground tubers of fennel pondweed on the lake, but subsequently switched to feeding on harvest remains in sugar beet fields.

3. The daily energy intake was estimated by multiplying the average time spent foraging per day with the instantaneous energy intake rate while foraging. In the case of pondweed feeding, the latter was estimated from the functional response and the depletion of tuber biomass. In the case of beet feeding, it was estimated from dropping production rate. Gross energy intake was converted to metabolizable energy intake using the assimilation as determined in digestion trials. The daily energy expenditure was estimated by the time-energy budget method. Energetic costs were determined using heart rate.

4. The daily gain of pondweed feeding at the median date of the habitat switch (i.e. when 50% of the swans had switched) was compared with that of beet feeding. The daily gain of beet feeding was calculated for two strategies depending on the night activity on the lake: additional pondweed feeding (mixed feeding) or sleeping (pure beet feeding).

5. The majority of the swans switched when the daily gain they could achieve by staying on the pondweed bed fell just below the average daily gain of pure beet feeders. However, mixed feeders would attain an average daily gain considerably above that of pondweed feeders. A sensitivity analysis showed that this result was robust.

6. We therefore reject the hypothesis that the habitat switch by swans can be explained by simple long-term energy rate maximization. State-dependency, predation risk, and protein requirements are put forward as explanations for the delay in habitat switch.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We studied the feeding ecology of Little Terns Sterna albifrons, Sandwich Terns S. sandvicensis and Royal Terns S. maxima in the Archipélago dos Bijagós (11°40′N, 15°45′W) in Guinea-Bissau (West Africa) during the winter of 1992/1993. More than 95% of all prey taken by these terns were roundfish, ranging in weight from 0.3 to 40 g. Birds usually fed alone, but sometimes they were observed feeding in mixed-species flocks consisting of 15-200 individuals. Capture rate (n fish per hour foraging) in these flocks was higher than that of solitary birds. However, smaller fish were caught by birds foraging in flocks, so food intake rate (g/h) did not differ between solitary and flock-feeding birds. The relationships between foraging behaviour of the three tern species and abiotic factors, such as time, tide and water clarity, have been investigated. Capture rate of Royal Terns increased with water clarity. For Little Terns and Sandwich Terns, food intake rate was lower in the most turbid waters compared to clearer waters. There was very little foraging activity during high tide. For Little Terns and Royal Terns, food intake rate was about twice as high during receding and low tides as during an incoming tide. Food intake rate averaged 8 g/h in Little Terns, 60 g/h in Sandwich Terns and 45 g/h in Royal Terns. With a rough model, we estimate the maximum rate of daily energy expenditure of terns wintering in the tropics at 3 x BMR (defined as energy expenditure of inactive bird at thermoneutrality in a post-absorptive state during the resting phase of the daily cycle). From an energetic viewpoint, wintering Sandwich Terns in Guinea-Bissau seem to have an easy living.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We tested the ability of overall dynamic body acceleration (ODBA) to predict the rate of oxygen consumption ([Formula: see text]) in freely diving Steller sea lions (Eumetopias jubatus) while resting at the surface and diving. The trained sea lions executed three dive types-single dives, bouts of multiple long dives with 4-6 dives per bout, or bouts of multiple short dives with 10-12 dives per bout-to depths of 40 m, resulting in a range of activity and oxygen consumption levels. Average metabolic rate (AMR) over the dive cycle or dive bout calculated was calculated from [Formula: see text]. We found that ODBA could statistically predict AMR when data from all dive types were combined, but that dive type was a significant model factor. However, there were no significant linear relationships between AMR and ODBA when data for each dive type were analyzed separately. The potential relationships between AMR and ODBA were not improved by including dive duration, food consumed, proportion of dive cycle spent submerged, or number of dives per bout. It is not clear whether the lack of predictive power within dive type was due to low statistical power, or whether it reflected a true absence of a relationship between ODBA and AMR. The average percent error for predicting AMR from ODBA was 7-11 %, and standard error of the estimated AMR was 5-32 %. Overall, the extensive range of dive behaviors and physiological conditions we tested indicated that ODBA was not suitable for estimating AMR in the field due to considerable error and the inconclusive effects of dive type.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Low levels of daily energy expenditure (insufficient physical activity and increased sedentary time) have been associated with adverse health outcomes in young people. The Multimedia Activity Recall for Children and Adolescents (MARCA) is a computerized, self-report, use-of-time tool that can assess daily energy expenditure. The study aim was to validate the MARCA for the estimation of energy expenditure in young people, using the criterion standard doubly labeled water. MATERIALS/METHODS: Over a 15 day assessment period, 32 participants (10-18 years) completed the MARCA and underwent a doubly labeled water protocol. Indirect calorimetry was used to assess resting metabolic rate. Total daily energy expenditure (TEE) and activity-related energy expenditure (AEE) were estimated from both the MARCA and doubly labeled water. Association and agreement between methods for TEE and AEE were assessed using Spearman correlations and Bland-Altman plots, respectively. RESULTS: Compared to doubly labeled water, the MARCA over-estimated TEE by an average of 50 kcal/day (limits of agreement -1 589 to 1 490 kcal/day) and under-estimated AEE 105 kcal/day (limits of agreement -1 404 to 1 614 kcal/day). The MARCA showed strong correlation with doubly labeled water for TEE (rho=0.70, p<0.0001) and moderate correlation for AEE (rho=0.56, p=0.0009). CONCLUSIONS: Overall, the MARCA indicated moderate validity for the assessment of daily TEE and AEE. The wide limits of agreement indicate the MARCA has greater utility for group-level rather than individual-level estimates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mobile phones are becoming important instruments for assessing diet and energy intake. We developed the Tool for Energy Balance in Children (TECH), which uses a mobile phone to assess energy and food intake in pre-school children. The aims of this study were: (a) to compare energy intake (EI) using TECH with total energy expenditure (TEE) measured via doubly labelled water (DLW); and (b) to compare intakes of fruits, vegetables, fruit juice, sweetened beverages, candy, ice cream, and bakery products using TECH with intakes acquired by 24 h dietary recalls. Participants were 39 healthy, Swedish children (5.5 ± 0.5 years) within the ongoing Mobile-based Intervention Intended to Stop Obesity in Preschoolers (MINISTOP) obesity prevention trial. Energy and food intakes were assessed during four days using TECH and 24 h telephone dietary recalls. Mean EI (TECH) was not statistically different from TEE (DLW) (5820 ± 820 kJ/24 h and 6040 ± 680 kJ/24 h, respectively). No significant differences in the average food intakes using TECH and 24 h dietary recalls were found. All food intakes were correlated between TECH and the 24 h dietary recalls (ρ = 0.665-0.896, p < 0.001). In conclusion, TECH accurately estimated the average intakes of energy and selected foods and thus has the potential to be a useful tool for dietary studies in pre-school children, for example obesity prevention trials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To investigate whether skeletal muscle gene expression of calpain 3 is related to obesity and insulin resistance.

DESIGN: Cross-sectional studies in 27 non-diabetic human subjects and in Psammomys obesus, a polygenic animal model of obesity and type 2 diabetes.

MEASUREMENTS: Expression of CAPN3 in skeletal muscle was measured using Taqman fluorogenic PCR. In the human subjects, body composition was assessed by DEXA and insulin sensitivity was measured by euglycemic-hyperinsulinemic clamp. In Psammomys obesus, body composition was determined by carcass analysis, and substrate oxidation rates, physical activity and energy expenditure were measured by whole-body indirect calorimetry.

RESULTS: In human subjects, calpain 3 gene expression was negatively correlated with total (P=0.022) and central abdominal fat mass (P=0.034), and with blood glucose concentration in non-obese subjects (P=0.017). In Psammomys obesus, calpain 3 gene expression was negatively correlated with circulating glucose (P=0.013) and insulin (P=0.034), and with body fat mass (P=0.049). Indirect calorimetry revealed associations between calpain 3 gene expression and carbohydrate oxidation (P=0.009) and energy expenditure (P=0.013).

CONCLUSION/INTERPRETATION: Lower levels of expression of calpain 3 in skeletal muscle were associated with reduced carbohydrate oxidation and elevated circulating glucose and insulin concentrations, and also with increased body fat and in particular abdominal fat. Therefore, reduced expression of calpain 3 in both humans and Psammomys obesus was associated with phenotypes related to obesity and insulin resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A well-resourced, comprehensive, population-based set of strategies is needed to
attenuate and eventually reverse the current trends of increasing obesity prevalence
now apparent in most countries. The Epidemiological Triad (host, vector,
environment) has proven to be a robust model for other epidemics and is applied
to obesity. Host-based strategies are primarily educational and these tend to
be most effective among people with higher incomes and higher educational
attainment. The main vectors for a high-energy intake are energy-dense foods and
drinks and large portion sizes and, for low energy expenditure, machines that
promote physical inactivity. Vector-based strategies that alter food formulation
can have a significant impact, particularly through influencing common, highvolume
foods. The increasingly ‘obesogenic’ environments are probably the main
driving forces for the obesity epidemic. There are many environmental strategies
that can influence the physical, economic, policy or socio-cultural environments,
but the evidence base for these potentially powerful interventions is small.
Children should be the priority population for interventions, and improving the
general socio-economic conditions for disadvantaged, marginalized or poor population
sectors is also a central strategy for obesity prevention. The key settings
for interventions are schools, homes, neighbourhoods, primary health care services
and communities. The key macroenvironments for interventions are the
transport and infrastructure sector, the media and the food sector.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The search for effective ways of dealing with obesity has centred on biological research and clinical management. However, obesity needs to be conceptualized more broadly if the modern pandemic is to be arrested. The epidemiological triad (hosts, agent/vectors and environments) has served us well in dealing with epidemics in the past, and may be worth re-evaluating to this end. Education, behaviour change and clinical practices deal predominantly with the host, although multidisciplinary practices such as shared-care might also be expected to impact on other corners of the triad. Technology deals best with the agent of obesity (energy imbalance) and it's vectors (excessive energy intake and/or inadequate energy expenditure), and policy and social change are needed to cope with the environment. The value of a broad model like this, rather than specific isolated approaches, is that the key players such as legislators, health professionals, governments and industry can see their roles in attenuating and eventually reversing the epidemic. It also highlights the need to intervene at all levels in obesity control and reduces the relevance of arguments about nature vs. nurture.


--------------------------------------------------------------------------------

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES: This study evaluated a behavioural model of the relation between social factors and obesity, in which differences in body mass index (BMI) across sociodemographic groups were hypothesized to be attributable to social group differences in health behaviours affecting energy expenditure (physical activity, diet and alcohol consumption and weight control).

METHODS: A total of 8667 adults who participated in the 1995 Australian National Health and Nutrition Surveys provided data on a range of health factors including objectively measured height and weight, health behaviours, and social factors including family status, employment status, housing situation and migration status.

RESULTS: Social factors remained significant predictors of BMI after controlling for all health behaviours. Neither social factors alone, nor health behaviours alone, adequately explained the variance in BMI. Gender-specific interactions were found between social factors and individual health behaviours.

CONCLUSIONS: These results suggest that social factors moderate the relation between BMI and weight-related behaviours, and that the mechanisms underlying sociodemographic group differences in obesity may vary among men and women. Additional factors are likely to act in conjunction with current health behaviours to explain variation in obesity prevalence across sociodemographic groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is a multiadaptor protein with E3-ubiquitin ligase activity involved in regulating the degradation of receptor tyrosine kinases. We have recently reported that c-Cbl–/– mice exhibit a lean phenotype and enhanced peripheral insulin action likely due to elevated energy expenditure. In the study reported here, we examined the effect of a high-fat diet on energy homeostasis and glucose metabolism in these animals. When c-Cbl–/– mice were fed a high-fat diet for 4 weeks, they maintained hyperphagia, higher whole-body oxygen consumption (27%), and greater activity (threefold) compared with wild-type animals fed the same diet. In addition, the activity of several enzymes involved in mitochondrial fat oxidation and the phosphorylation of acetyl CoA carboxylase was significantly increased in muscle of high-fat–fed c-Cbl–deficient mice, indicating a greater capacity for fat oxidation in these animals. As a result of these differences, fat-fed c-Cbl–/– mice were 30% leaner than wild-type animals and were protected against high-fat diet–induced insulin resistance. These studies are consistent with a role for c-Cbl in regulating nutrient partitioning in skeletal muscle and emphasize the potential of c-Cbl as a therapeutic target in the treatment of obesity and type 2 diabetes.