48 resultados para Rare-earth exchanged zeolite-Y


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Additions of rare earth elements to magnesium alloys are qualitatively reported in the literature to retard recrystallisation. However, their effect in the presence of other (non-rare earth) alloy additions has not been systematically shown nor has the effect been quantified. The microstructural restoration following the hot deformation of Mg-xZn-yRE (x = 2.5 and 5 wt.%, y = 0 and 1 wt.%, and RE = Gd and Y) alloys has been studied using double hit compression testing and microscopy. It was found that, in the absence of rare earth additions, increases in zinc level had a negligible influence on the kinetics of restoration and the microstructure developed both during extrusion and throughout double hit testing. Adding rare earth elements to Mg-Zn alloys was found to retard restoration of the microstructure and maintain finer recrystallised grains. However, in the Mg-Zn-RE alloys, increasing the zinc concentration from 2.5 wt.% to 5 wt.% accelerated the restoration process, most likely due to a depletion of rare earth elements from solid solution and modification of the particles present in the matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extruded Mg-Zn-RE alloys have been shown to exhibit excellent combinations of yield strength and ductility, but it is not completely clear how adding rare earth metals to Mg-Zn alters the microstructure and affects the mechanical properties. Microstructural changes and the resulting mechanical properties from changes in composition and extrusion temperature have been investigated for Mg-. x Zn-. y RE (. x=2.5 and 5. wt.%, y=0 and 1. wt. %, and RE=Gd and Y) alloys. Adding RE to Mg-Zn increased the strength and reduced the ductility, while increasing the zinc concentration in the Mg-Zn-RE alloys had the reverse effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium (Mg) based alloys have been extensively considered for their use as biodegradable implant materials. However, controlling their corrosion rate in the physiological environment of the human body is still a significant challenge. One of the most effective approaches to address this challenge is to carefully select alloying compositions with enhanced corrosion resistance and mechanical properties when designing the Mg alloys. This paper comprehensively reviews research progress on the development of Mg alloys as biodegradable implant materials, highlighting the effects of alloying elements including aluminum (Al), calcium (Ca), lithium (Li), manganese (Mn), zinc (Zn), zirconium (Zr), strontium (Sr) and rare earth elements (REEs) on the corrosion resistance and biocompatibility of Mg alloys, from the viewpoint of the design and utilization of Mg biomaterials. The REEs covered in this review include cerium (Ce), erbium (Er), lanthanum (La), gadolinium (Gd), neodymium (Nd) and yttrium (Y). The effects of alloying elements on the microstructure, corrosion behavior and biocompatibility of Mg alloys have been critically summarized based on specific aspects of the physiological environment, namely the electrochemical effect and the biological behavior. This journal is © the Partner Organisations 2014.