51 resultados para POLYCRYSTALLINE MICROSTRUCTURES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the AlxCoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA[U+05F3]s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of neodymium (Nd) on the microstructures, mechanical properties, in vitro corrosion behavior, and cytotoxicity of as-cast Mg- 1Mn-2Zn-xNd alloys (x = 0.5, 1.0, 1.5, mass%) have been investigated to assess whether Nd is an effective element to increase the strength and corrosion resistance of Mg alloys, and to evaluate whether those alloys are suitable for biomedical applications. The microstructures were examined by X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was studied using electrochemical measurement and cytotoxicity was evaluated using osteoblast-like SaOS2 cell. The results indicate that all the cast Mg-1Mn-2Zn-xNd alloys are composed of both alpha phase of magnesium (Mg) and a compound of Mg7Zn3, and their grain sizes decrease with Nd content. Nd is not an effective element to improve the strength and corrosion resistance of cast Mg-Mn-Zn alloys. Increase of Nd content from 0.5 to 1.5 does not significantly change biocompatibility of alloys. The cast alloys exhibit much better corrosion resistance than pure Mg and good biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abrasive wear resistance of four distinct metallurgical steel microstructures - bainite, pearlite, martensite and tempered martensite, with similar hardness levels was investigated. A pin-on-disc tribometer was used to simulate the two-body abrasive condition (i.e. the metallic surface abrading against the silicon carbide abrasive particles) and evaluate the specific wear rate of the microstructures. Each microstructure had a unique response towards the abrasion behaviour and this was largely evident in the friction curve. However, the multi-phase microstructures (i.e. bainite and pearlite) demonstrated better abrasion resistance than the single-phase microstructures (i.e. martensite and tempered martensite). Abrasion induced microstructural changes at the deformed surfaces were studied using sub-surface and topographical techniques. The properties of these layers (i.e. surface profile measurements) determined the amount of material loss for each microstructure. These were directly linked to the single-wear track analysis that highlighted a marked difference in their mode of material removal. Ploughing and wedge formation modes were dominant in the case of bainite and pearlite microstructures, whereas the cutting mode could be attributed to the higher material loss in the single-phase microstructures. The combination of brittle and ductile phases in the multi-phase microstructure matrix could be one of the driving factors for their superior abrasion resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of interfaces depend not only on the lattice misorientation, but also on the interface plane orientation. Extensive studies of grain boundaries led to the conclusion that in systems evolving by grain growth, the relative areas of different grain boundary planes are inversely correlated to their relative energies. In other words, the low energy grain boundary planes make up a larger part of the population than the higher energy grain boundary planes. The hypothesis of this work is that the interface plane orientation distribution in transformed microstructures depends more on the mechanism of formation than on the relative energy. After a discussion of methods for measuring interface plane orientations, results will be presented for lath martensite in a low carbon steel and for martensite in a Ti-6Al-4V alloy processed in two different ways to promote a displacive transformation in one case and a diffusional transformation in the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnesium-based alloy Mg–9Al–1Zn has been extruded and heat treated to produce a dense population of lamellar plate-shaped particles. In compression with a testing orientation well aligned for prolific {1012} twinning, precipitation resulted in a significant increase in the yield point, but there was no change in the volume fraction of twins that were produced. It is proposed that the larger number of smaller twins observed in the aged condition is the result of inhibition of twin growth by the particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, a series of thermomechanical routes were used to produce different microstructures (i.e., ferrite and martensite) in low-carbon low alloy steels. The five-parameter grain boundary character distribution was measured for all microstructures. The thermomechanical processing route altered the texture of the fully ferritic microstructure and significantly influenced the anisotropy of the grain boundary character distribution. Generally, the population of (111) planes increased with an increase in the γ-fiber texture for the ferritic microstructure, but it did not change the shape of the grain boundary plane distribution at specific misorientations. The most commonly observed boundaries in the fully ferritic structures produced through different routes were {112} symmetric tilt boundaries with the Σ3 = 60 deg/[111] misorientation; this boundary also had a low energy. However, the grain boundary plane distribution was significantly changed by the phase transformation path (i.e., ferrite vs martensite) for a given misorientation. In the martensitic steel, the most populous Σ3 boundary was the {110} symmetric tilt boundary. This results from the crystallographic constraints associated with the shear transformation (i.e., martensite) rather than the low-energy interface that dominates in the diffusional phase transformation (i.e., ferrite).