106 resultados para Nano-fibrils


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localized surface plasmon resonance (LSPR) biosensors are employed to detect target biomolecules which have particular resonance wavelengths. Accordingly, tunability of the LSPR wavelength is essential in designing LSPR devices. LSPR devices employing silver nano-particles present better efficiencies than those using other noble metals such as gold; however, silver nano-particles are easily oxidized when they come in contact with liquids, which is inevitable in biosensing applications. To attain both durability and tunabilty in a LSPR biosensor, this paper proposes alumina (AL2O3) capped silver nano-disks. It is shown that through controlling the thickness of the cap, the LSPR resonance frequency can be finely tuned over a wide range; and moreover, the cap protects silver nano-particles from oxidation and high temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel nano-sinusoid particle to be employed in enhanced localized surface plasmon resonance (LSPR) bio-sensing devices. Numerical investigations are carried out to demonstrate advantages offered by the proposed nano-particle on LSPR enhancement over other nano-particles including noble nano-triangles and nano-diamonds. Although nano-triangles exhibit high concentration of the electric field near their tips, when illuminated with a light polarized along the tip axis, they present only one hot spot at the vertex along the polarization direction. To create a structure with two hot spots, which is desired in bio-sensing applications, two nano-triangles can be put back-to-back. Therefore, a nano-diamond particle is obtained which exhibits two hot spots and presents higher enhancements than nano-triangles for the same resonant wavelength. The main drawback of the nano-diamonds is the fluctuation in their physical size-plasmon spectrum relationships, due to a high level of singularity as the result for their four sharp tip points. The proposed nano-sinusoid overcomes this disadvantage while maintaining the benefits of having two hot spots and high enhancements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel sinusoidal shape nano-particle employed in localized surface plasmon resonance (LSPR) devices. Numerical modeling demonstrates advantages offered by the proposed nano-sinusoid on LSPR enhancement against other nano-particles including noble nano-triangles and nano-diamonds. Although nano-triangles exhibit high concentration of the electric field near their tips, when illuminated with a light polarized along the tip axis, they present only one hot spot at the vertex along the polarization direction. To create a structure with two hot spots, which is desired in bio-sensing applications, two nano-triangles can be put back-to-back. Therefore, a nano-diamond particle is obtained which exhibits two hot spots and presents higher enhancements than nano-triangles for the same resonant wavelength. The main drawback of the nano-diamonds is the fluctuation in their physical size-plasmon spectrum relationships, due to a high level of singularity as the result for their four sharp tip points. The proposed nano-sinusoid overcomes this disadvantage while maintaining the benefits of having two hot spots and high enhancements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new nano-sinusoid shape has recently been proposed, which offers the advantage of more resonance wavelength tunability than that offered by other sharp-tip nano-particles. In this paper, a one-dimensional (1D) chain of the nano-sinusoids is modelled, and results are compared with those describing chains of nano-triangles and nano-diamonds. It is demonstrated that the chain of nano-sinusoids provides more enhancement at hot spots than other examined nano-particle shapes. This enhancement is analytically quantified using the coupling constant values used in the electrostatic eigenmode method for analytically solving Maxwell's equations for the nano-plasmonic devices. In addition, investigating LSPR spectrum of two-dimensional (2D) arrays of NPs demonstrates existence of enhanced surface electric fields on hot spots of the outer rows of the array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the impact of changes in the protic ionic liquid (pIL) cation on the fibrilisation kinetics and the conversion of the A 16-22 from monomers to amyloid fibrils. When we compare the use of primary, secondary, and tertiary amines we find that the primary amine results in the greatest conversion into amyloid fibrils. We show that the pIL is directly interacting with the peptide and this likely drives the difference in conversion and kinetics observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Average number of fiber-to-fiber contacts in a fibrous structure is a prerequisite to investigate the mechanical, optical and transport properties of stochastic nanomicrofibrous networks. In this research work, based on theoretical analysis presented for the estimation of the number of contacts between fibers in electrospun random multilayer nanofibrous assembles, experimental verification for theoretical dependence of fiber diameter and network porosity on the fiber to fiber contacts has been provided. The analytical model formulated is compared with the existing theories to predict the average number of fiber contacts of nanofiber structures. The effect of fiber diameters and network porosities on average number of fiber contacts of nano-microfiber mats has been investigated. A comparison is also made between the experimental and theoretical number of inter-fiber contacts of multilayer electrospun random nanomicrofibrous networks. It has been found that both the fiber diameter and the network porosity have significant effects on the properties of fiber-to-fiber contacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial purity aluminium plate was reduced by rolling under nitrogen in 30 passes from an initial material thickness of 10 mm to a final thickness of 2 mm (80% reduction). Analysis of the microstructure showed that the material produced in this way had an ul-trafine grained microstructure. The sheet was roll formed at room temperature to a V-section using commercial roll forming equipment. Two sets of experiments were per-formed; one with a 15 mm radius in the base of the V and the other with a 5 mm radius. The performance in terms of final shape and springback is compared with the same part shape formed by V-die bending. The mechanical properties of the sheet were determined using the tensile test. It has been found that even if the total tensile elongation is close to zero and bending of the material is very limited, ultra-fine grained and low ductile sheet metals can be roll formed to simple section shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combinational loading-unloading rate effects were studied on the behavior of NiTi shape memory alloys (SMAs) under nanoindentation loads. While combinational loading rates showed negligible effects on the performance of NiTi SMAs, the combinational unloading rates did show significant effects on hysteresis energy. The heating-cooling phenomenon during the loading stage and the sole cooling during the unloading stage explain the effects. This study elucidates the nature of thermomechanical SMAs' behaviors during complex compressive loadings with the presence of solid-state phase transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by _3 to 40 _C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further _3 to 10 _C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solidstate phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactoferrin (Lf) is a natural occurring iron binding protein present in many mammalian excretions and involved in various physiological processes. Lf is used in the transport of iron along with other molecules and ions from the digestive system. However its the modulatory functions exhibited by Lf in connection to immune response, disease regression and diagnosis that has made this protein an attractive therapeutic against chronic diseases. Further, the exciting potentials of employing nanotechnology in advancing drug delivery systems, active disease targeting and prognosis have also shown some encouraging outcomes. This review focuses on the role of Lf in diagnosing infection, cancer, neurological and inflammatory diseases and the recent nanotechnology based strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for single cell stiffness measurement based on a nano-needle and nanomanipulation. The nano-needle with a buffering beam was fabricated from an atomic force microscope cantilever by the focused ion beam etching technique. Wild type yeast cells (W303) were prepared and placed on the sample stage inside an environmental scanning electron microscope (ESEM) chamber. The nanomanipulator actuated the nano-needle to press against a single yeast cell. As a result, the deformation of the cell and nano-needle was observed by the ESEM system in real-time. Finally, the stiffness of the single cell was determined based on this deformation information. To reveal the relationship between the cell stiffness and the environmental humidity conditions, the cell stiffness was measured at three different humidity conditions, i.e. 40, 70 and 100%, respectively. The results show that the stiffness of a single cell is reduced with increasing humidity.