54 resultados para Monitoring Systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Case volume per 100 000 population and perioperative mortality rate (POMR) are key indicators to monitor and strengthen surgical services. However, comparisons of POMR have been restricted by absence of standardised approaches to when it is measured, the ideal denominator, need for risk adjustment, and whether data are available. We aimed to address these issues and recommend a minimum dataset by analysing four large mixed surgical datasets, two from well-resourced settings with sophisticated electronic patient information systems and two from resource-limited settings where clinicians maintain locally developed databases. METHODS: We obtained data from the New Zealand (NZ) National Minimum Dataset, the Geelong Hospital patient management system in Australia, and purpose-built surgical databases in Pietermaritzburg, South Africa (PMZ) and Port Moresby, Papua New Guinea (PNG). Information was sought on inclusion and exclusion criteria, coding criteria, and completeness of patient identifiers, admission, procedure, discharge and death dates, operation details, urgency of admission, and American Society of Anesthesiologists (ASA) score. Date-related errors were defined as missing dates and impossible discrepancies. For every site, we then calculated the POMR, the effect of admission episodes or procedures as denominator, and the difference between in-hospital POMR and 30-day POMR. To determine the need for risk adjustment, we used univariate and multivariate logistic regression to assess the effect on relative POMR for each site of age, admission urgency, ASA score, and procedure type. FINDINGS: 1 365 773 patient admissions involving 1 514 242 procedures were included, among which 8655 deaths were recorded within 30 days. Database inclusion and exclusion criteria differed substantially. NZ and Geelong records had less than 0·1% date-related errors and greater than 99·9% completeness. PMZ databases had 99·9% or greater completeness of all data except date-related items (94·0%). PNG had 99·9% or greater completeness for date of birth or age and admission date and operative procedure, but 80-83% completeness of patient identifiers and date related items. Coding of procedures was not standardised, and only NZ recorded ASA status and complete post-discharge mortality. In-hospital POMR range was 0·38% in NZ to 3·44% in PMZ, and in NZ it underestimated 30-day POMR by roughly a third. The difference in POMR by procedures instead of admission episodes as denominator ranged from 10% to 70%. Age older than 65 years and emergency admission had large independent effects on POMR, but relatively little effect in multivariate analysis on the relative odds of in-hospital death at each site. INTERPRETATION: Hospitals can collect and provide data for case volume and POMR without sophisticated electronic information systems. POMR should initially be defined by in-hospital mortality because post-discharge deaths are not usually recorded, and with procedures as denominator because details allowing linkage of several operations within one patient's admission are not always present. Although age and admission urgency are independently associated with POMR, and ASA and case mix were not included, risk adjustment might not be essential because the relative odds between sites persisted. Standardisation of inclusion criteria and definitions is needed, as is attention to accuracy and completeness of dates of procedures, discharge and death. A one-page, paper-based form, or alternatively a simple electronic data collection form, containing a minimum dataset commenced in the operating theatre could facilitate this process. FUNDING: None.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genome of virulent strains may possess the ability to mutate by means of antigenic shift and/or antigenic drift as well as being resistant to antibiotics with time. The outbreak and spread of these virulent diseases including avian influenza (H1N1), severe acute respiratory syndrome (SARS-Corona virus), cholera (Vibrio cholera), tuberculosis (Mycobacterium tuberculosis), Ebola hemorrhagic fever (Ebola Virus) and AIDS (HIV-1) necessitate urgent attention to develop diagnostic protocols and assays for rapid detection and screening. Rapid and accurate detection of first cases with certainty will contribute significantly in preventing disease transmission and escalation to pandemic levels. As a result, there is a need to develop technologies that can meet the heavy demand of an all-embedded, inexpensive, specific and fast biosensing for the detection and screening of pathogens in active or latent forms to offer quick diagnosis and early treatments in order to avoid disease aggravation and unnecessary late treatment costs. Nucleic acid aptamers are short, single-stranded RNA or DNA sequences that can selectively bind to specific cellular and biomolecular targets. Aptamers, as new-age bioaffinity probes, have the necessary biophysical characteristics for improved pathogen detection. This article seeks to review global pandemic situations in relation to advances in pathogen detection systems. It particularly discusses aptameric biosensing and establishes application opportunities for effective pandemic monitoring. Insights into the application of continuous polymeric supports as the synthetic base for aptamer coupling to provide the needed convective mass transport for rapid screening is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent years have witnessed a surge in telerehabilitation and remote healthcare systems blessed by the emerging low-cost wearable devices to monitor biological and biokinematic aspects of human beings. Although such telerehabilitation systems utilise cloud computing features and provide automatic biofeedback and performance evaluation, there are demands for overall optimisation to enable these systems to operate with low battery consumption and low computational power and even with weak or no network connections. This paper proposes a novel multilevel data encoding scheme satisfying these requirements in mobile cloud computing applications, particularly in the field of telerehabilitation. We introduce architecture for telerehabilitation platform utilising the proposed encoding scheme integrated with various types of sensors. The platform is usable not only for patients to experience telerehabilitation services but also for therapists to acquire essential support from analysis oriented decision support system (AODSS) for more thorough analysis and making further decisions on treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Offshore wind turbine requires more systematized operation and maintenance strategies to ensure systems are harmless, profitable and cost-effective. Condition monitoring and fault diagnostic systems ominously plays an important role in offshore wind turbine in order to cut down maintenance and operational costs. Condition monitoring techniques which describing complex faults and failure mode types and their generated traceable signs to provide cost-effective condition monitoring and predictive maintenance and their diagnostic schemes. Continuously monitor the condition of critical parts are the most efficient way to improve reliability of wind turbine. Implementation of Condition Based Maintenance (CBM) strategy provides right time maintenance decisions and Predictive Health Monitoring (PHM) data to overcome breakdown and machine downtime. Fault detection and CBM implementation is challenging for off shore wind farm due to the complexity of remote sensing, components health and predictive assessment, data collection, data analysis, data handling, state recognition, and advisory decision. The rapid expansion of wind farms, advanced technological development and harsh installation sites needs a successful CM approach. This paper aims to review brief status of recent development of CM techniques and focusing with major faults takes place in gear box and bearing, rotor and blade, pitch, yaw and tower system and generator and control system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to describe the location and intensity of free-living physical activity in New Zealand adolescents during weekdays and weekend days using Global Positioning Systems (GPS), accelerometry, and Geographical Information Systems (GIS). Participants (n = 79) aged 12-17 years (M = 14.5, SD 1.6) recruited from two large metropolitan high schools each wore a GPS watch and an accelerometer for four consecutive days. GPS and accelerometer data were integrated with GIS software to map the main locations of each participant's episodes of moderate-vigorous physical activity. On average participants performed 74 (SD 36) minutes of moderate and 7.5 (SD 8) minutes of vigorous activity per day, which on weekdays was most likely to occur within a 1 km radius of their school or 150 meters of their home environment. On weekends physical activity patterns were more disparate and took place outside of the home environment. Example maps were generated to display the location of moderate to vigorous activity for weekdays and weekends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While SQL injection attacks have been plaguing web application systems for years, the possibility of them affecting RFID systems was only identified very recently. However, very little work exists to mitigate this serious security threat to RFID-enabled enterprise systems. In this paper, we propose a policy-based SQLIA detection and prevention method for RFID systems. The proposed technique creates data validation and sanitization policies during content analysis and enforces those policies during runtime monitoring. We tested all possible types of dynamic queries that may be generated in RFID systems with all possible types of attacks that can be mounted on those systems. We present an analysis and evaluation of the proposed approach to demonstrate the effectiveness of the proposed approach in mitigating SQLIA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Surgical conditions represent a significant proportion of the global burden of disease, and therefore, surgery is an essential component of health systems. Achieving universal health coverage requires effective monitoring of access to surgery. However, there is no widely accepted standard for the required capabilities of a first-level hospital. We aimed to determine whether a group of operations could be used to describe the delivery of essential surgical care.

METHODS: We convened an expert panel to identify procedures that might indicate the presence of resources needed to treat an appropriate range of surgical conditions at first-level hospitals. Using data from the World Health Organization Emergency and Essential Surgical Care Global database, collected using the WHO Situational Analysis Tool (SAT), we analysed whether the ability to perform each of these procedures-which we term "bellwether procedures"-was associated with performing a full range of essential surgical procedures.

FINDINGS: The ability to perform caesarean delivery, laparotomy, and treatment of open fracture was closely associated with performing all obstetric, general, basic, emergency, and orthopaedic procedures (p < 0.001) in the population that responded to the WHO SAT Survey. Procedures including cleft lip, cataract, and neonatal surgery did not correlate with performing the bellwether procedures.

INTERPRETATION: Caesarean delivery, laparotomy, and treatment of open fractures should be standard procedures performed at first-level hospitals. With further validation in other populations, local managers and health ministries may find this useful as a benchmark for what first-level hospitals can and should be able to perform on a 24/7 basis in order to ensure delivery of emergency and essential surgical care to their population. Those procedures which did not correlate with the bellwether procedures can be referred to a specialized centre or collected for treatment by a visiting specialist team.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Workflow temporal verification is conducted to guarantee on-time completion, which is one of the most important QoS (Quality of Service) dimensions for business processes running in the cloud. However, as today's business systems often need to handle a large number of concurrent customer requests, conventional response-time based process monitoring strategies conducted in a one-by-one fashion cannot be applied efficiently to a large batch of parallel processes because of significant time overhead. Similar situations may also exist in software companies where multiple software projects are carried out at the same time by software developers. To address such a problem, based on a novel runtime throughput consistency model, this paper proposes a QoS-aware throughput based checkpoint selection strategy, which can dynamically select a small number of checkpoints along the system timeline to facilitate the temporal verification of throughput constraints and achieve the target on-time completion rate. Experimental results demonstrate that our strategy can achieve the best efficiency and effectiveness compared with the state-of-the-art as and other representative response-time based checkpoint selection strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Community-based initiatives show promise for preventing childhood obesity. They are characterized by community leaders and members working together to address complex local drivers of energy balance.

Objectives: To present a protocol for a stepped wedge cluster randomized trial in ten communities in the Great South Coast Region of Victoria, Australia to test whether it is possible to: (1) strengthen community action for childhood obesity prevention, and (2) measure the impact of increased action on risk factors for childhood obesity.

Methods: The WHO STOPS intervention involves a facilitated community engagement process that: creates an agreed systems map of childhood obesity causes for a community; identifies intervention opportunities through leveraging the dynamic aspects of the system; and, converts these understandings into community-built, systems-oriented action plans. Ten communities will be randomized (1:1) to intervention or control in year one and all communities will be included by year three. The primary outcome is childhood obesity prevalence among grade two (ages 7-8 y), grade four (9-10 y) and grade six (11-12 y) students measured using our established community-led monitoring system (69% school and 93% student participation rate in government and independent schools). An additional group of 13 external communities from other regions of Victoria with no specific interventions will provide an external comparison. These communities will also allow us to assess diffusion of the intervention to control communities during the first three years of the trial.

Conclusion: This trial will test effectiveness, over a five-year period, of community-owned, -supported and -led strategies designed to address complex and dynamic causes of childhood obesity.