77 resultados para Metal illness on screen


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bond strength of various metal multilayers produced by cold rolling of metal foils with different thermal conductivity was investigated. Results indicated that the metallic multilayer system with low thermal conductivity exhibited relative high bond strength while high thermal conductivity metal system may fail to be roll-bonded together. The relationship between the deformation-induced localized heating and the bond strength were discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A metal/polymer laminate is a new light weight sheet material suitable to replace conventional steel or aluminium sheet in future car designs. In this study the effect of material composition and process conditions on the forming behaviour of metal/polymer laminates in sheet metal forming was investigated by experimental, analytical and numerical methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel approach to producing improved bio-interfaces by combining continuous wave (CW) and pulsed plasma polymerization (PP) modes is reported. This approach has enabled the generation of stable interfaces with a higher density of primary amine functionality on metal, ceramic and semiconductor surfaces. Heptylamine (HA) was used as the amine-precursor. In this new design, a thin CW PPHA layer is introduced to provide strong cross-linking and attachment to the metal or semiconductor surfaces and to provide a good foundation for better bonding a pulsed PPHA layer with high retention of functional groups. The combined mode provides the pulsed mode advantage of a 3-fold higher density of primary amines, while retaining much of the markedly higher stability in aqueous solutions of the continuous mode.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Samples of the muscle of two species of tilapia (Oreochromis mossambicus and O. niloticus; 17-20 cm length) were obtained from at least one reservoir in each of the six river basins (Aruvi Aru, Kala Oya, Kirindi Oya, Ma Oya, Mahaweli, and Walawe Ganga catchments) in Sri Lanka. The metals Ca, Cu, Fe, K, Mg, Mn, Na, and Zn were consistently detected in the muscle tissue. Overall, there were few differences in the concentration of metals between the two species of fish, although there were also some statistically significant differences (p < 0.05) in the concentrations of some metals in fish obtained from some of the reservoirs. Aruvi Aru stands out as a river basin in which the two fish species have significantly lower concentration of metals when compared to other river basins. The concentration of the metals studied were below WHO and FSANZ guideline values for fish, suggesting that the consumption of the metals found in tilapia from these reservoirs poses little risk to human health.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of organic additive. Three kinds of organic compounds, thiophene, 3,4-ethylenedioxythiophene and biphenyl, were used as a polymerizable monomeric additive. The organic additives were found to be electrochemically oxidized to form conductive polymer films on the electrode at high potential. By using the gel polymer electrolytes containing different organic additive, lithium metal polymer cells, composed of lithium anode and LiCoO2 cathode, were assembled and their cycling performance evaluated. Adding small amounts of a suitable polymerizable additive to the gel polymer electrolyte was found to reduce the interfacial resistance in the cell during cycling, and it thus exhibited less capacity fade and better high rate performance. Differential scanning calorimetric studies showed that the thermal stability of the fully charged LiCoO2 cathode was improved in the cell containing an organic additive.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bond strength of various metal multilayers produced by cold rolling of metal foils with different thermal conductivity was investigated. Results indicated that under the same conditions of deformation and surface preparation, the metallic multilayer system with low thermal conductivity exhibited relative high bond strength while high thermal conductivity metal system may fail to be roll-bonded together. The relationship between the deformation-induced localized heating and the bond strength were discussed. The deformation-induced localized heating in the low thermal conductivity metal multilayer systems may provide opportunities for achieving a successful accumulative roll bonding or a “cold roll/heat treatment/cold roll” process to synthesize metallic multilayer materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three cyclic vinyl based additives, based respectively on oxygen, sulphur and fluorine, are tested for their ability to improve the cycling of lithium in a hostile ionic liquid medium. Oxygen based vinylene carbonate is found to offer the best protection of the lithium metal whilst allowing very consistent lithium cycling to occur. The vinylene carbonate based system under study is, however, imperfect. Lithium metal is deposited in a dendritic morphology, and vinylene carbonate is rapidly consumed during lithium cycling if it is present in a small quantity. Our results suggest that ionic liquid systems critically relying on a small amount of additive to protect a lithium electrode are not viable for long cycle life secondary batteries. It is suggested that an ionic liquid which itself is lithium metal compatible be used instead.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The metal strip used in roll forming has often been preprocessed by (tension or roller) leveling or by skin-pass rolling, and as a consequence, may contain residual stresses. These stresses are not well observed by the tensile test, but could have a significant effect on the bending and springback behavior. With the advent of improved process design techniques for roll forming, including advanced finite element techniques, the need for precise material property data has become important. The major deformation mode of roll forming is that of bending combined with unloading and reverse bending, and hence property data derived from bend tests could be more relevant than that from tensile testing.

This work presents a numerical study on the effect of skin passing on the material behavior of stainless steel strip in pure bending and tension. A two dimensional (2-D) numerical model was developed using Abaqus Explicit to analyze the affect of skin passing on the residual stress profile across a section for various working conditions. The deformed meshes and their final stress fields were then imported as pre-defined fields into Abaqus Standard, and the post-skin passing material behavior in pure bending was determined. The results show that a residual stress profile is introduced into the steel strip during skin passing, and that its shape and stress level depend on the overall thickness reduction as well as the number of rolling passes used in the skin passing process. The material behavior in bending and the amount of springback changed significantly depending on the skin pass condition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Variation in the incoming sheet material and fluctuations in the press setup is unavoidable in many stamping plants. The effect of these variations can have a large influence on the quality of the final stamping, in particular, unpredictable springback of the sheet when the tooling is removed. While stochastic simulation techniques have been developed to simulate this problem, there has been little research that connects the influence of the noise sources to springback. This paper characterises the effect of material and process variation on the robustness of springback for a semi-cylindrical channel forming operation, which shares a similar cross-section profile as many automotive structural components. The study was conducted using the specialised sheet metal forming package AutoFormTM Sigma, for which a series of stochastic simulations were performed with each of the noise sources incrementally introduced. The effective stress and effective strain scatter in a critical location of the part was examined and a response window, which indicates the respective process robustness, was defined. The incremental introduction of the noise sources allows the change in size of the stressstrain response window to be tracked. The results showed that changes to process variation parameters, such as BHP and friction coefficient, directly affect the strain component of the stressstrain response window by altering the magnitude of external work applied to forming system. Material variation, on the other hand, directly affected the stress component of the response window. A relationship between the effective stressstrain response window and the variation in springback was also established.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, analytical models of pure bending are developed to simulate a particular type of bend test and to determine possible errors arising from approximations used in analyzing experimental data. Analytical models proposed for steels include a theoretical solution of pure bending and a series of finite element models, based on the von Mises yield function, are subjected to different stress and strain conditions. The results show that for steel sheets the difference between measured and calculated results of the moment-curvature behaviour is small and the numerical results from the finite element models indicate that experimental results obtained from the test are acceptable in the range of the pure bending operation. Further for magnesium alloys, which exhibit unsymmetrical yielding, the algorithm of the yield function with a linear isotropic hardening model is implemented by programming a user subroutine in Abaqus for bending simulations of magnesium. The simulations using the proposed user subroutine extract better results than those using the von Mises yield function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanical behaviours of metal foams greatly depend on their cell topology, including cell shape, cell size etc. as well as relative density and material properties of the cell wall. However, the cell shape effect on the mechanical behaviours of such materials appears to be ignored in previous research. In this paper, both analytic and finite element models are developed and employed to investigate the effect of cell shape on the mechanical behaviour of open-cell magnesium alloy (AZ91) foams under compression, including deformation modes and failure modes. For numerical modelling, both two-dimensional (2-D) and three-dimensional (3-D) finite element models are developed to predict the compressive behaviours of typical open-cell metal foams and capture the deformation modes and failure mechanisms. Two typical cell shapes i.e. cubic and diamond are taken into consideration. To validate these models, the analytic and numerical results are compared to the experimental data. Both the numerical and experimental data indicate that the cell shape significantly affects the compression behaviour of open-cell metal foams. In general, numerical results from the three-dimensional solid-element model show better agreement with the experimental results than those from other finite element models.