65 resultados para Mammary gland and metabolism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background & Aims
Nutrients putatively implicated in pressure ulcer healing were evaluated in a clinical setting.

Methods
Sixteen inpatients with a stage 2, 3 or 4 pressure ulcer randomised to receive daily a standard hospital diet; a standard diet plus two high-protein/energy supplements; or a standard diet plus two high-protein/energy supplements containing additional arginine (9 g), vitamin C (500 mg) and zinc (30 mg). Nutritional status measurements (dietary, anthropometric and biochemical) and pressure ulcer size and severity (by PUSH tool; Pressure Ulcer Scale for Healing; 0=completely healed, 17=greatest severity) were measured weekly for 3 weeks.

Results
Patients’ age and BMI ranges were 37–92 years and 16.4–28.1 kg/m2, respectively. Baseline PUSH scores were similar between groups (8.7±0.5). Only patients receiving additional arginine, vitamin C and zinc demonstrated a clinically significant improvement in pressure ulcer healing (9.4±1.2 vs. 2.6±0.6; baseline and week 3, respectively; P<0.01). All patient groups presented with low serum albumin and zinc and elevated C-reactive protein. There were no significant changes in biochemical markers, oral dietary intake or weight in any group.

Conclusions
In this small set of patients, supplementary arginine, vitamin C and zinc significantly improved the rate of pressure ulcer healing. The results need to be confirmed in a larger study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Breast carcinoma is accompanied by changes in the acellular and cellular components of the microenvironment, the latter typified by a switch from fibroblasts to myofibroblasts.


Methods
We utilised conditioned media cultures, Western blot analysis and immunocytochemistry to investigate the differential effects of normal mammary fibroblasts (NMFs) and mammary cancer-associated fibroblasts (CAFs) on the phenotype and behaviour of PMC42-LA breast cancer cells. NMFs were obtained from a mammary gland at reduction mammoplasty, and CAFs from a mammary carcinoma after resection.


Results
We found greater expression of myofibroblastic markers in CAFs than in NMFs. Medium from both CAFs and NMFs induced novel expression of α-smooth muscle actin and cytokeratin-14 in PMC42-LA organoids. However, although conditioned media from NMFs resulted in distribution of vimentin-positive cells to the periphery of PMC42-LA organoids, this was not seen with CAF-conditioned medium. Upregulation of vimentin was accompanied by a mis-localization of E-cadherin, suggesting a loss of adhesive function. This was confirmed by visualizing the change in active β-catenin, localized to the cell junctions in control cells/cells in NMF-conditioned medium, to inactive β-catenin, localized to nuclei and cytoplasm in cells in CAF-conditioned medium.


Conclusion
We found no significant difference between the influences of NMFs and CAFs on PMC42-LA cell proliferation, viability, or apoptosis; significantly, we demonstrated a role for CAFs, but not for NMFs, in increasing the migratory ability of PMC42-LA cells. By concentrating NMF-conditioned media, we demonstrated the presence of factor(s) that induce epithelial-mesenchymal transition in NMF-conditioned media that are present at higher levels in CAF-conditioned media. Our in vitro results are consistent with observations in vivo showing that alterations in stroma influence the phenotype and behaviour of surrounding cells and provide evidence for a role for CAFs in stimulating cancer progression via an epithelial-mesenchymal transition. These findings have implications for our understanding of the roles of signalling between epithelial and stromal cells in the development and progression of mammary carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The total lipid content, composition of main lipid classes, composition of sterols and composition of fatty acids in the main glycerolipids of Perna viridis were analyzed through four seasons using TLC-FID and GLC. Mussel samples were collected during different seasons between 2003 and 2004 from Shengsi Island, Zhejiang Province, China and stored frozen prior to freeze-drying and lipid extraction. Ten grams of dried mussel powder of each season were analyzed. Total lipid content ranged from 14.5 g/100 g in spring month to 7.8 g/100 g dried mussel powder in autumn month. The predominant lipid in spring month was triacylglycerol (TAG), however, in the other three seasons the phospholipids (PL) was the main lipid class. The most abundant fatty acid in TAG, PL and phosphatidylcholine (PC) was 16:0, with the summer samples having the highest proportion (24-30% of total fatty acid) and winter the lowest (14-22%). In phosphatidylethanolamine (PE), the spring samples had the highest proportions of 16:0. The predominant polyunsaturated fatty acids (PUFA) were 22:6n-3 and 20:5n-3 in TAG, PL, PE and PC (25-40%). The proportions of 22:6n-3 and 20:5n-3 were higher in spring than in other seasons in PL and PE. There were nine sterols identified, with cholesterol being the predominant sterol, and other main ones were desmostersol/brassicasterol and 24-methylenecholesterol. Proportions of other fatty acids in different lipid fractions and the sterol compositions as well also varied seasonally. There were subject to the seasonal variations. Differences in lipid content and composition, fatty acid composition in different lipid fractions may be caused by multiple factors such as lifecycle, sex, variation of plankton in different seasons and temperature, which could influence physiological activities and metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated linoleic acids (CLA) have been shown to decrease body fat content in pigs. It is possible that feeding pigs diets rich in CLA may increase carcass lipid CLA to levels that could provide health benefits when included as a part of a healthy diet. Therefore, the aim of the present study was to determine whether dietary CLA supplementation has any effect on the fatty acid composition of subcutaneous and intramuscular adipose tissue in pigs. Thirty-five female cross bred (Large White X Landrace) pigs (initial weight 57·2 kg and initial P2 back fat 11·5 mm) were used in the present study. Pigs were housed individually and randomly allocated to one of six dietary treatments (0·00, 1·25, 2·50, 5·00, 7·50 and 10·00 g CLA55 (55 g CLA isomers/100 g total fatty acids; Natural Lipids Ltd, Hovdebygda, Norway)/kg)
and fed their respective diets for 8 weeks. Twelve CLA isomers in the diet and in pig tissue lipids were separated by Agþ-HPLC. CLA was incorporated at fivefold higher levels in subcutaneous fat as compared with intramuscular fat and in a dose-dependant manner. Overall, the transfer efficiency of CLA was maximized at 5·00 g CLA55/kg. However, there was clear selectivity in the uptake or incorporation of cis,trans-9,11 isomer over the trans,cis-10,12 isomer. In general, CLA supplementation produced significant changes in skeletal muscle and adipose tissue fatty acid composition, indicating that dietary CLA had a potent affect on lipid transport and metabolism in vivo. Significant increases in myristic, palmitic and palmitoleic acids and a reduction in arachidonic acid were observed, suggesting an alteration in
activity of Δ5-, Δ6- and Δ9-desaturases in pig adipose tissue. In conclusion, feeding pigs diets supplemented with CLA increases carcass lipid CLA, but also results in changes in the fatty acid profile in pig fat that could potentially outweigh the benefits of CLA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fur seal is a mammal with an unusual ability to turn its milk production on and off without significantly altering the gross morphology of the mammary gland. This atypical lactation cycle is due to the fact that maternal foraging and infant nursing are spatially and temporally separate (Bonner, 1984). Maternal care involves the suckling of offspring over a period of at least 4 months, but lactation can extend to more than 12 months. Following a perinatal fast of approximately 1 week, females depart the breeding colony to forage at sea and, for the remainder of lactation, alternate between short periods ashore suckling their young with longer periods of up to 4 weeks foraging at sea. Whilst foraging at sea, milk production in the fur seal mammary gland either ceases or is reduced (Arnould & Boyd, 1995b).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A role for the copper transporter, ATP7B, in secretion of copper from the human breast into milk has previously not been reported, although it is known that the murine ortholog of ATP7B facilitates copper secretion in the mouse mammary gland. We show here that ATP7B is expressed in luminal epithelial cells in both the resting and lactating human breast, where it has a perinuclear localization in resting epithelial cells and a diffuse location in lactating tissue. ATP7B protein was present in a different subset of vesicles from those containing milk proteins and did not overlap with Menkes ATPase, ATP-7A, except in the perinuclear region of cells. In the cultured human mammary line, PMC42-LA, treatment with lactational hormones induced a redistribution of ATP7B from a perinuclear region to a region adjacent, but not coincident with, the apical plasma membrane. Trafficking of ATP7B was copper dependent, suggesting that the hormone-induced redistribution of ATP7A was mediated through an increase in intracellular copper. Radioactive copper (64Cu) studies using polarized PMC42-LA cells that overexpressed mAtp7B protein showed that this transporter facilitates copper efflux from the apical surface of the cells. In summary, our results are consistent with an important function of ATP7B in the secretion of copper from the human mammary gland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both copper transporting ATPases, ATP7A and ATP7B, are expressed in mammary epithelial cells but their role in copper delivery to milk has not been clarified. We investigated the role of ATP7A in delivery of copper to milk using transgenic mice that over-express human ATP7A. In mammary gland of transgenic mice, human ATP7A protein was 10- to 20-fold higher than in control mice, and was localized to the basolateral membrane of mammary epithelial cells in lactating mice. The copper concentration in the mammary gland of transgenic dams and stomach contents of transgenic pups was significantly reduced compared to non-transgenic mice. The mRNA levels of endogenous Atp7a, Atp7b, and Ctr1 copper transporters in the mammary gland were not altered by the expression of the ATP7A transgene, and the protein levels of Atp7b and ceruloplasmin were similar in transgenic and non-transgenic mice. These data suggest that ATP7A plays a role in removing excess copper from the mammary epithelial cells rather than supplying copper to milk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective:
Nutrition during critical periods in early life may increase the subsequent risk of obesity, hypertension and metabolic diseases in adulthood. Few studies have focused on the long-term consequences of poor nutrition during the suckling period on the susceptibility to developing obesity when exposed to a palatable cafeteria-style high-fat diet (CD) after weaning.

Design:
This study examined the impact of early undernutrition, followed by CD exposure, on blood pressure, hormones and genes important for insulin sensitivity and metabolism and skeletal muscle mRNA expression of adiponectin receptor 1 (AdipoR1), carnitine palmitoyl-transferase I (CPT-1), cytochrome c oxidase 4 (COX4) and peroxisome proliferator-activated receptor alpha (PPARalpha). Following normal gestation, Sprague–Dawley rat litters were adjusted to 18 (undernourished) or 12 (control) pups. Rats were weaned (day 21) onto either palatable CD or standard chow.

Results:
Early undernourished rats were significantly lighter than control by 17 days, persisting into adulthood only when animals were fed chow after weaning. Regardless of litter size, rats fed CD had doubled fat mass at 15 weeks of age, and significant elevations in plasma leptin, insulin and adiponectin. Importantly, undernutrition confined to the suckling period, elevated circulating adiponectin regardless of post-weaning diet. Blood pressure was reduced in early undernourished rats fed chow, and increased by CD. Early undernutrition was associated with long-term elevations in the expression of AdipoR1, CPT-1, COX4 and PPARalpha in skeletal muscle.

Conclusion:
This study demonstrates the important role of early nutrition on body weight and metabolism, suggesting early undernourishment enhances insulin sensitivity and fatty-acid oxidation. The long-term potential benefit of limiting nutrition in the early postnatal period warrants further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TGF-Ý superfamily comprises a large group of proteins with many effects on muscle growth and maturation. The molecular regulation of skeletal muscle regeneration and metabolism in response to prominent superfamily members, myostatin and TGF-Ý1, were analysed, demonstrating the importance of this pathway in controlling how muscles grow and are regulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA sequencing and gene expression data related to lactation (mammary gland, milk and their sub compartments) obtained in a number of species (buffalo, mice, human, seal, wallaby, platypus).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammary gland involution requires co-ordination of milk production, immune responses, apoptosis and remodeling. Initiation and progression of each of these components involves integral control by the mammary gland. Although cell-based culture models and genetically manipulated animals have shed light on these processes, the factors controlling each step in the involution cascade are still poorly understood. The fur seal displays a unique lactation phenotype. During the lactation cycle the mammary gland downregulates milk production and initiates an immune response but fails to initiate the apoptotic phase of involution, allowing the female fur seal to undertake long foraging trips of up to 28 days between suckling bouts. Upon return to shore the female continues feeding her pup following resumption of lactation and milk production. Expression profiling of genes involved in this lactation cycle provides valuable tools for investigation of the factors responsible for the initiation of apoptosis at involution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The domestic dog has undergone extensive artificial selection resulting in an extreme diversity in body size, personality, life‐history, and metabolic traits among breeds. Here we tested whether proactive personalities (high levels of activity, boldness, and aggression) are related to a fast “pace of life” (high rates of growth, mortality, and energy expenditure). Data from the literature provide preliminary evidence that artificial selection on dogs (through domestication) generated variations in personality traits that are correlated with life histories and metabolism. We found that obedient (or docile, shy) breeds live longer than disobedient (or bold) ones and that aggressive breeds have higher energy needs than unaggressive ones. These correlations could result from either human preference for particular trait combinations or, more likely, correlated responses to artificial selection on personality. Our results suggest the existence of a general pace‐of‐life syndrome arising from the coevolution of personality, metabolic, and life‐history traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 This project focused on the novel S100A19 protein, expressed exclusively in marsupials and monotremes, identifying it as an important component of the innate immune system. Data showed that S100A19 is differentially regulated in the pouch and mammary gland of the wallaby to protect the infant when most susceptible to infection.