62 resultados para MINI-FLYING ROBOTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel manipulators provide several benefits compared to serial manipulators of similar size. These advantages typically include higher speed and acceleration, improved position accuracy and increased stiffness. However, parallel manipulators also suffer from several disadvantages. These drawbacks commonly include a small ratio of the positional workspace relative to the manipulator footprint and a limited rotational capability of the manipulated platform. A few parallel manipulators featuring a large ratio of the positional workspace relative to the footprint have been proposed. This paper investigates the feasibility of employing gearing to extend the range of the end-effector rotation of such mechanisms. The objective is to achieve parallel manipulators where both the positional and rotational workspace are comparable to that of serial manipulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing use of commercial off-the-shelf Mini-Micro Unmanned Aerial Vehicle (MAV) systems with enhanced intelligence methodologies can potentially be a threat, if this technology falls into the wrong hands. In this study, we investigate the level of threat imposed on critical infrastructure using different MAV swarm artificial intelligence traits and coordination methodologies. The critical infrastructure in consideration is a moving commercial land vehicle that may be transporting for example an important civil servant or politician. Non-dimensional fitness functions used for measuring MAV mission effectiveness have been established for the case studies considered in this paper. The findings indicated that increased in intelligent and coordination level elevate teams' efficiency, therefore poses a higher degree of threat to targeted land vehicle. Observations from the study have suggested that memory-based cooperative technique provides a consistent efficiency compared to other methods for the mission objectives considered in this paper. © 2014 The authors and IOS Press. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to analyse teleoperation of an ABB industrial robot with an ABB IRC5 controller. A method to improve motion smoothness and decrease latency using the existing ABB IRC5 robot controller without access to any low-level interface is proposed. Design/methodology/ approach - The proposed control algorithm includes a high-level proportional-integral-derivative controller (PID) controller used to dynamically generate reference velocities for different travel ranges of the tool centre point (TCP) of the robot. Communication with the ABB IRC5 controller was performed utilising the ABB PC software development kit. The multitasking feature of the IRC5 controller was used to enhance the communication frequency between the controller and the remote application. Trajectory tracking experiments of a pre-defined three-dimensional trajectory were carried out and the benefits of the proposed algorithm were demonstrated. The robot was intentionally installed on a wobbly table and its vibrations were recorded using a six-degrees-of-freedom force/torque sensor fitted to the tool mounting interface of the robot. The robot vibrations were used as a measure of the smoothness of the tracking movements. Findings - A communication rate of up to 250 Hz between the computer and the controller was established using C#.Net. Experimental results demonstrating the robot TCP, tracking errors and robot vibrations for different control approaches were provided and analysed. It was demonstrated that the proposed approach results in the smoothest motion with tracking errors of < 0.2 mm. Research limitations/implications - The proposed approach may be employed to produce smooth motion for a remotely operated ABB industrial robot with the existing ABB IRC5 controller. However, to achieve high-bandwidth path following, the inherent latency of the controller must be overcome, for example by utilising a low-level interface. It is particularly useful for applications including a large number of short manipulation segments, which is typical in teleoperation applications. Social implications - Using the proposed technique, off-the-shelf industrial robots can be used for research and industrial applications where remote control is required. Originality/value - Although low-level control interface for industrial robots seems to be the ideal long-term solution for teleoperation applications, the proposed remote control technique allows out-of-the-box ABB industrial robots with IRC5 controllers to achieve high efficiency and manipulation smoothness without requirements of any low-level programming interface. © Copyright - 2014 Emerald Group Publishing Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 This paper proposes a method to improve motion smoothness and decrease latency using existing ABB IRC5 robot controllers without access to any low level interface. The proposed control algorithm includes a high-level PID controller used to dynamically generate reference velocities for different travel ranges of the tool centre point (TCP) of the robot. Communication with the ABB IRC5 controller was performed utilising the ABB PC software development kit (SDK). The multitasking feature of the IRC5 controller was used in order to enhance the communication frequency between the controller and the remote application. Trajectory tracking experiments of a predefined 3D trajectory were carried out and the benefits of the proposed algorithm was demonstrated. The robot was intentionally installed on a wobbly table and its vibrations were recorded using a six degrees of freedom (DOF) force/torque sensor fitted to the tool mounting interface of the robot. The robot vibrations were used as a measure of the smoothness of the tracking movements. Experimental results demonstrating the robot tool centre point (TCP), tracking errors, and robot vibrations for different control approaches were provided and analysed. It was demonstrated that the proposed approach results in the smoothest motion with less than 0.2 mm tracking errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing solutions to carrier-based sensor placement by a single robot in a bounded unknown Region of Interest (ROI) do not guarantee full area coverage or termination. We propose a novel localized algorithm, named Back-Tracking Deployment (BTD). To construct a full coverage solution over the ROI, mobile robots (carriers) carry static sensors as payloads and drop them at the visited empty vertices of a virtual square, triangular, or hexagonal grid. A single robot will move in a predefined order of directional preference until a dead end is reached. Then it back-tracks to the nearest sensor adjacent to an empty vertex (an "entrance" to an unexplored/uncovered area) and resumes regular forward movement and sensor dropping from there. To save movement steps, the back-tracking is carried out along a locally identified shortcut. We extend the algorithm to support multiple robots that move independently and asynchronously. Once a robot reaches a dead end, it will back-track, giving preference to its own path. Otherwise, it will take over the back-track path of another robot by consulting with neighboring sensors. We prove that BTD terminates within finite time and produces full coverage when no (sensor or robot) failures occur. We also describe an approach to tolerate failures and an approach to balance workload among robots. We then evaluate BTD in comparison with the only competing algorithms SLD [Chang et al. 2009a] and LRV [Batalin and Sukhatme 2004] through simulation. In a specific failure-free scenario, SLD covers only 40-50% of the ROI, whereas BTD covers it in full. BTD involves significantly (80%) less robot moves and messages than LRV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike exercising mammals, migratory birds fuel very high intensity exercise (e.g., flight) with fatty acids delivered from the adipose tissue to the working muscles by the circulatory system. Given the primary importance of fatty acids for fueling intense exercise, we discuss the likely limiting steps in lipid transport and oxidation for exercising birds and the ecological factors that affect the quality and quantity of fat stored in wild birds. Most stored lipids in migratory birds are comprised of three fatty acids (16:0, 18:1 and 18:2) even though migratory birds have diverse food habits. Diet selection and selective metabolism of lipids play important roles in determining the fatty acid composition of birds which, in turn, affects energetic performance during intense exercise. As such, migratory birds offer an intriguing model for studying the implications of lipid metabolism and obesity on exercise performance. We conclude with a discussion of the energetic costs of migratory flight and stopover in birds, and its implications for bird migration strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of robust finite-time trajectory tracking of nonholonomic mobile robots with unmeasurable velocities is studied. The contributions of the paper are that: first, in the case that the angular velocity of the mobile robot is unmeasurable, a composite controller including the observer-based partial state feedback control and the disturbance feed-forward compensation is designed, which guarantees that the tracking errors converge to zero in finite time. Second, if the linear velocity as well as the angular velocity of mobile robot is unmeasurable, with a stronger constraint, the finite-time trajectory tracking control of nonholonomic mobile robot is also addressed. Finally, the effectiveness of the proposed control laws is demonstrated by simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor failures or oversupply in wireless sensor networks (WSNs), especially initial random deployment, create spare sensors (whose area is fully covered by other sensors) and sensing holes. We envision a team of robots to relocate sensors and improve their area coverage. Existing algorithms, including centralized ones and the only localized G-R3S2 [9], move only spare sensors and have limited improvement because non-spare sensors, with area coverage mostly overlapped by neighbour sensors, are not moved, and additional sensors are deployed to fill existing small holes. We propose a localized algorithm, called Localized Ant-based Sensor Relocation Algorithm with Greedy Walk (LASR-G), where each robot may carry at most one sensor and makes decision that depends only on locally detected information. In LASRG, each robot calculates corresponding pickup or dropping probability, and relocates sensor with currently low coverage contribution to another location where sensing hole would be significantly reduced. The basic algorithm optimizes only area coverage, while modified algorithm includes also the cost of robot movement. We compare LASR-G with G-R3S2, and examine both single robot and multi robots scenarios. The simulation results show the advantages of LASR-G over G-R3S2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three Flying Saucers is wall mounted set of three works which parody the iconic kitsch set of three flying ducks which inhabit the walls of many houses from the 1950’s to today. The project proposes a time in the future where contact with alien intelligent life has been established and we have finally obtained proof that Flying Saucers were real and had been visiting our world for many decades. Now these mysterious celestial forms have been adopted as the new kitsch and adorn the homes of the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a set of events and a set of robots, the dispatch problem is to allocate one robot for each event to visit it. In a single round, each robot may be allowed to visit only one event (matching dispatch), or several events in a sequence (sequence dispatch). In a distributed setting, each event is discovered by a sensor and reported to a robot. Here, we present novel algorithms aimed at overcoming the shortcomings of several existing solutions. We propose pairwise distance based matching algorithm (PDM) to eliminate long edges by pairwise exchanges between matching pairs. Our sequence dispatch algorithm (SQD) iteratively finds the closest event-robot pair, includes the event in dispatch schedule of the selected robot and updates its position accordingly. When event-robot distances are multiplied by robot resistance (inverse of the remaining energy), the corresponding energy-balanced variants are obtained. We also present generalizations which handle multiple visits and timing constraints. Our localized algorithm MAD is based on information mesh infrastructure and local auctions within the robot network for obtaining the optimal dispatch schedule for each robot. The simulations conducted confirm the advantages of our algorithms over other existing solutions in terms of average robot-event distance and lifetime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a target tracking controller based on spiking neural network is proposed for autonomous robots. This controller encodes the preprocessed environmental and target information provided by CCD cameras, encoders and ultrasonic sensors into spike trains, which are integrated by a three-layer spiking neural network (SNN). The outputs of SNN are generated based on the competition between the forward/backward neuron pair corresponding to each motor, with the weights evolved by the Hebbian learning. The application to target tracking of a mobile robot in unknown environment verifies the validity of the proposed controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of navigating a ying robot to a specific sensor node within a wireless sensor network. This target sensor node periodically sends out beacons. The robot is capable of sensing the received signal strength of each received beacon (RSSI measurements). Existing approaches for solving the sensor spotting problem with RSSI measurements do not deal with noisy channel conditions and/or heavily depend on additional hardware capabilities. In this work we reduce RSSI uctuations due to noise by continuously sampling RSSI values and maintaining an exponential moving average (EMA). The EMA values enable us to detect significant decrease of the received signal strength. In this case it is reasoned that the robot is moving away from the sensor. We present two basic variants to decide a new moving direction when the robot moves away from the sensor. Our simulations show that our approaches outperform competing algorithms in terms of success rate and ight time. Infield experiments with real hardware, a ying robocopter successfully and quickly landed near a sensor placed in an outdoor test environment. Traces show robustness to additional environmental factors not accounted for in our simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robots are ever increasing in a variety of different workplaces providing an array of benefits such alternative solutions to traditional human labor. While developing fully autonomous robots is the ultimate goal in many robotic applications the reality is that there still exist many situationswere robots require some level of teleoperation in order to achieve assigned goals especially when deployed in non-deterministic environments. For instance teleoperation is commonly used in areas such as search and rescue, bomb disposal and exploration of inaccessible or harsh terrain. This is due to a range of factors such as the lack of ability for robots to quickly and reliably navigate unknown environments or provide high-level decision making especially intime critical tasks. To provide an adequate solution for such situations human-in-the-loop control is required. When developing human-in-the-loop control it is important to take advantage of the complimentary skill-sets that both humans and robots share. For example robots can performrapid calculations, provide accurate measurements through hardware such as sensors and store large amounts of data while humans provide experience, intuition, risk management and complex decision making capabilities. Shared autonomy is the concept of building robotic systems that take advantage of these complementary skills-sets to provide a robust an efficient robotic solution. While the requirement of human-in-the-loop control exists Human Machine Interaction (HMI) remains an important research topic especially the area of User Interface (UI) design.In order to provide operators with an effective teleoperation system it is important that the interface is intuitive and dynamic while also achieving a high level of immersion. Recent advancements in virtual and augmented reality hardware is giving rise to innovative HMI systems. Interactive hardware such as Microsoft Kinect, leap motion, Oculus Rift, Samsung Gear VR and even CAVE Automatic Virtual Environments [1] are providing vast improvements over traditional user interface designs such as the experimental web browser JanusVR [2]. This combined with the introduction of standardized robot frameworks such as ROS and Webots [3] that now support a large number of different robots provides an opportunity to develop a universal UI for teleoperation control to improve operator efficiency while reducing teleoperation training.This research introduces the concept of a dynamic virtual workspace for teleoperation of heterogeneous robots in non-deterministic environments that require human-in-the-loop control. The system first identifies the connected robots through the use kinematic information then determines its network capabilities such as latency and bandwidth. Given the robot type and network capabilities the system can then provide the operator with available teleoperation modes such as pick and place control or waypoint navigation while also allowing them to manipulate the virtual workspace layout to provide information from onboard camera’s or sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: This study aimed to validate SenseWear Mini software algorithm versions 2.2 (SW2.2) and 5.2 (SW5.2) for estimating energy expenditure (EE) in children. DESIGN: Laboratory-based validation study. METHODS: 57 children aged 5-12 y completed a protocol involving 15 semi-structured sedentary (SED), light-intensity (LPA), and moderate- to vigorous-intensity (MVPA) physical activities. EE was estimated using portable indirect calorimetry (IC). The accuracy of EE estimates (kcal·min(-1)) from SW2.2 and SW5.2 were examined at the group level and individual level using the mean absolute percentage error (MAPE), Bland-Altman plots and equivalence testing. RESULTS: MAPE values were lower for SW5.2 (30.1±10.7%) than for SW2.2 (44.0±6.2%). Although mean differences for SW5.2 were smaller than for SW2.2 during SED (-0.23±0.22 vs. -0.61±0.20kcal·min(-1)), LPA (-0.69±0.76 vs. -1.07±0.46kcal·min(-1)) and MVPA (-2.22±1.15 vs. -2.57±1.15kcal·min(-1)), limits of agreement did not decrease for the updated algorithms. For all activities, SW2.2 and SW5.2 were not equivalent to IC (p>0.05). Errors increased with increasing intensity. CONCLUSION: The current SenseWear Mini algorithms SW5.2 underestimated EE. The overall improved accuracy for SW5.2 was not accompanied with improved accuracy at the individual level and EE estimates were not equivalent to IC.