88 resultados para MG-GD ALLOYS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work introduces a double inclusion elasto-plastic self-consistent (DI-EPSC) scheme for topologies in which crystals can contain subdomains (i.e. twins, etc.). The approach yields a direct coupling between the mechanical response of grains and their subdomains via a concentration relationship on mean fields derived from both the Eshelby and the Tanaka-Mori properties. The latent effect caused by twinning on the mechanical response is observed on both initially extruded and non-textured Mg alloys. For twinned grains, it is shown that deformation system activities and plastic strain distributions within twins drastically depend on the interaction with parent domains. Moreover, a quantitative study on the coupled influence of secondary slip activities on the material response is proposed. © 2014 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work was to assess a number of coatings developed for Mg for biomedical applications. The Mg substrates were high-purity (HP) Mg and ME10, an alloy recently developed for improved extrudability. The research utilized the new fishing-line specimen configuration to allow direct comparison to our recent in vivo and in vitro measurements. The in vitro measurements were immersion tests of fishing-line specimens immersed in Nor's solution at 37 °C. Tests of substantial duration are needed because the corrosion rates of uncoated samples are low. Nor's solution is the designation given to Hank's solution through which CO2 is bubbled at a partial pressure of 0.009 atm. In this solution, pH is maintained constant by the interaction of CO2 and the bicarbonate ions in the solution. This is the same buffer as that which maintains the pH of blood. Coatings examined were: (i) an anodization using a bio-friendly alkaline electrolyte consisting of phosphate, borate, and metasilicate, (ii) octyltrimethoxysilane (OSi), (iii) 1,2-bis[triethoxysilyl]ethane (BTSE), (iv) anodization+OSi, and (v) anodization + BTSE. The performance of coated samples was comparable to or better than that of the uncoated samples, and there was a substantially better performance for the ME10 samples after anodization+OSi. Reasons for the various performances are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extruded Mg-1Mn-2Zn-xNd alloys (x=0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623K with an extrusion ratio of 14.7 under an average extrusion speed of 4mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg-Mn-Zn-Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg-1Mn-2Zn-xNd alloys are composed of both α phase of Mg and a compound of Mg7Zn3 with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg-1Mn-2Zn-1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanical behavior under uniaxial tension of Al-Mg alloy 5182 pre-deformed in conventional rolling (CR), asymmetric rolling-continuous (ASRC), and asymmetric rolling-reversed (ASRR) was investigated and modeled with a rate dependent crystal plasticity finite element method and VPSC (Visco-Plastic Self Consistent) model. M-K theory combined with Yld2000 model by Barlat et al. (Int. J. Plasticity 2003, 19, 1297) was used to predict the strain-based and stress-based formability for AA 5182 material. It was concluded that the new ASRR process has very compatible formability with improved strength compared to CR process. These merits can be directly applied for clam-shell resistant design in rigid-packaging industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effects of neodymium (Nd) on the microstructures, mechanical properties, in vitro corrosion behavior, and cytotoxicity of as-cast Mg- 1Mn-2Zn-xNd alloys (x = 0.5, 1.0, 1.5, mass%) have been investigated to assess whether Nd is an effective element to increase the strength and corrosion resistance of Mg alloys, and to evaluate whether those alloys are suitable for biomedical applications. The microstructures were examined by X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was studied using electrochemical measurement and cytotoxicity was evaluated using osteoblast-like SaOS2 cell. The results indicate that all the cast Mg-1Mn-2Zn-xNd alloys are composed of both alpha phase of magnesium (Mg) and a compound of Mg7Zn3, and their grain sizes decrease with Nd content. Nd is not an effective element to improve the strength and corrosion resistance of cast Mg-Mn-Zn alloys. Increase of Nd content from 0.5 to 1.5 does not significantly change biocompatibility of alloys. The cast alloys exhibit much better corrosion resistance than pure Mg and good biocompatibility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The successful applications of magnesium (Mg) alloys as biodegradable orthopedic implants are mainly restricted due to their rapid degradation rate in the physiological environment, leading to a loss of mechanical integrity. This study systematically investigated the degradation behaviors of novel Mg-Zr-Sr alloys using electrochemical techniques, hydrogen evolution, and weight loss in simulated body fluid (SBF). The microstructure and degradation behaviors of the alloys were characterized using optical microscopy, XRD, SEM, and EDX. The results indicate that Zr and Sr concentrations in Mg alloys strongly affected the degradation rate of the alloys in SBF. A high concentration of 5 wt% Zr led to acceleration of anodic dissolution, which significantly decreased the biocorrosion resistance of the alloys and their biocompatibility. A high volume fraction of Mg17Sr2 phases due to the addition of excessive Sr (over 5 wt%) resulted in enhanced galvanic effects between the Mg matrix and Mg17Sr2 phases, which reduced the biocorrosion resistance. The average Sr release rate is approximately 0.15 mg L-1 day-1, which is much lower than the body burden and proves its good biocompatibility. A new biocorrosion model has been established to illustrate the degradation of alloys and the formation of degradation products on the surface of the alloys. It can be concluded that the optimal concentration of Zr and Sr is less than 2 wt% for as-cast Mg-Zr-Sr alloys used as biodegradable orthopedic implants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of the second phase Mg17Sr2 on the biocorrosion behavior of Mg5ZrxSr (x = 0, 2, 5 wt%) alloys before and after solution treatment was investigated. Electrochemical impedance spectroscopy, cathodic polarization and hydrogen evolution were used to evaluate the biocorrosion of Mg5ZrxSr. We found that Mg17Sr2 precipitated on boundary zones and enhanced the galvanic effect, leading to a severer corrosion of the Mg matrix adjacent to Mg17Sr2. The corrosion subsequently spread gradually from the regions adjacent to the Mg17Sr2 to the central Mg matrix. However, a high volume fraction of Mg17Sr2 could also form a continuous network, isolate the Mg matrix and act as a barrier of corrosion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

 In this study, nano-indentation technique is employed to investigate the initiation of basal slip and extension twin separately in magnesium. The present method prove useful in studying the influence of solid solution and precipitates on these two deformation modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the grain size on the deformation of Mg–3Al–1Zn was examined in compression at 300 °C. At low strains the flow stress increases with increasing grain size. This is interpreted in terms of dynamic recrystallization. Empirical models of dynamic recrystallization are developed and employed to generate a microstructure map.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since magnesium alloys are the lightest metallic materials, they are very attractive for automotive and aerospace industries. The main problem of these alloys is limited ductility due to a shortage of independent slip systems. In order to improve the formability in these alloys, an understanding of the deformation modes is required. In the present work, different slip systems were investigated in rolled Mg-3Al-IZn by means of in situ tensile tests in the SEM. These permitted electron backscatter diffraction (EBSD) and electron backscatter diffraction imaging (QBSD) to be carried out during the test. The results show that non-basal slip systems are active at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructures of hot- and cold-rolled Mg-3Al-1Zn (AZ31) are examined using scanning electron and optical microscopy. It is shown that the microstructures following multipass hot rolling and annealing are more uniform than those formed by heavy single pass rolling and annealing. The importance of twins in producing intragranular recrystallization is evident, although the most dominant nucleation site is grain boundaries. The cold-rolled structure after a rolling reduction of 15 pct is dominated by the presence of deformation twins. Twin trace analysis suggests that approximately two thirds of the twins are a form of “c-axis compression” twin. A number of “c-axis tension” twins were also observed and additional in-situ scanning electron microscopy experiments were performed to confirm earlier observations that suggest these twins can form after deformation, during unloading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wrought magnesium alloys exhibit poor cold formability and the accepted explanation is the shortage of independent slip systems. In order to improve the formability in these alloys, an understanding of the deformation modes is required. In the present work, activation of different slip and twinning systems are investigated in rolled Mg–3Al–1Zn using electron back scattering diffraction. Analysis was performed on deformed surfaces and on metallographically prepared cross-sections following deformation at room temperature. The results reinforce the importance of prismatic slip and c-axis compression double twinning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium alloys are attractive for automotive and aerospace industries, due to their low density. One problem with these alloys is their limited formability at room temperature. Twinning plays a dominant role in deformation behaviour and it can be expected that an increased understanding of twinning will help improve formability. In the present work, the behaviour of different twinning systems in as-cast Mg-3AI-IZn is investigated using in-situ tensile tests in a scanning electron microscope. Electron backscatter diffraction and back scatter electron imaging were carried out during the tests. The results show both "tension" and "compression" twinning are active at room temperature and that twinning and untwinning occur both during loading and unloading.