68 resultados para MEMS sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the exploration of a synergic effect within n-type inorganic–p-type organic nanohybrids in gas sensors. One-dimensional (1D) n-type SnO2–p-type PPy composite nanofibers were prepared by combining the electrospinning and polymerization techniques, and taken as models to explore the synergic effect during the sensing measurement. Outstanding sensing performances, such as large responses and low detection limits (20 ppb for ammonia) were obtained. A plausible mechanism for the synergic effect was established by introducing p–n junction theory to the systems. Moreover, interfacial metal (Ag) nanoparticles were introduced into the n-type SnO2–p-type PPy nano-hybrids to further supplement and verify our theory. The generality of this mechanism was further verified using TiO2–PPy and TiO2–Au–PPy nano-hybrids. We believe that our results can construct a powerful platform to better understand the relationship between the microstructures and their gas sensing performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is perhaps the most pressing and urgent environmental issue facing the world today. However our ability to predict and quantify the consequences of this change is severely limited by the paucity of in situ oceanographic measurements. Marine animals equipped with sophisticated oceanographic data loggers to study their behavior offer one solution to this problem because marine animals range widely across the world’s ocean basins and visit remote and often inaccessible locations. However, unlike the information being collected from conventional oceanographic sensing equipment, which has been validated, the data collected from instruments deployed on marine animals over long periods has not. This is the first long-term study to validate in situ oceanographic data collected by animal oceanographers. We compared the ocean temperatures collected by leatherback turtles (Dermochelys coriacea) in the Atlantic Ocean with the ARGO network of ocean floats and could find no systematic errors that could be ascribed to sensor instability. Animal-borne sensors allowed water temperature to be monitored across a range of depths, over entire ocean basins, and, importantly, over long periods and so will play a key role in assessing global climate change through improved monitoring of global temperatures. This finding is especially pertinent given recent international calls for the development and implementation of a comprehensive Earth observation system (see http://iwgeo.ssc.nasa.gov/documents.asp?s=review) that includes the use of novel techniques for monitoring and understanding ocean and climate interactions to address strategic environmental and societal needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon materials such as Graphene and carbon nano tube promise a new generation of RF NEMS devices that bring many advantages due to their very high performances such as low mass, high Young's modulus and electrical conductivity. In this paper, the properties of Graphene for RF M/NEMS applications are briefly described. We compare the mechanical behaviour of Graphene switches with metallic RF MEMS switches such as Aluminium and Gold. The analytical study and simulation results show that the actuation voltage of Al and Au switches is high (35 V) whereas the actuation voltage for the Graphene switch is low (7.7 V). Also, the switching time of Graphene switch is 3.5 ns while the switching time for metallic switches is approximately 17μs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing the capacitance ratio in RF MEMS shunt capacitive switch will increase its RF performance but also raise its actuation voltage. To improve the RF performance of the switch without increasing its capacitance ratio, this paper explores two methods: reducing the LC resonance from the mm-wave into the X-band by using an inductive bridge, and using two short high impedance transmission lines at both ends of the CPW line. Accordingly, this paper presents the design and simulation of an electro-static low actuation voltage and a very high isolation multipurpose switch with a very large bandwidth. The simulation results are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a wide band RF MEMS capacitive switch. The LC resonant frequency is reduced from mm wave to X band frequencies at down-state by using a meander type membrane, with the frequency band is being increased by adding two short high impedance lines at both ends of coplanar waveguide (CPW). Moreover, this acts as T-match circuit in up-state position and improves the matching. Simulation results demonstrate that the capacitance ratio reduces from 50 to 21.4, S21 and S11 are less than −10dB for the entire frequency band at down-state and up-state. Also, a comprehensive and complete electric model of the switch is proposed and simulation results agree well with the characteristics of the physical structure of the MEMS switch. Vpull-in and Vpull-out of this switch are 8.1V and 0.3V, respectively.