149 resultados para LARGE-STRAIN DEFORMATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of structure during the hot working of an austenitic Ni-30%Fe alloy is studied using EBSD analysis of samples tested in torsion. A microstructural map in temperature-strain space that plots grain size, cell size, fracture and dynamic recrystallization is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The post-deformation softening behaviour of austenite has been studied for various compositions and deformation conditions. The strain at which the transition from strain dependent to strain independent post-deformation softening behaviour occurs (ε*) has been found to coincide closely with the strain to the peak stress (εp) under certain conditions but not under others. It has been proposed that the relationship between ε* and εp may be described geometrically using the initial grain size and the dynamically recrystallised grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experimental research indicates that superelastic shape memory alloy nickel–titanium (NiTi) is superior to stainless steel against wear and could be applied in tribological engineering. It is believed that the super wear resistance of shape memory alloys is mainly due to the recovery of the superelastic deformation. Our recent wear study indicates that wear rate is very sensitive to the maximum contact pressure. In the present investigation, which involves applying Hertz contact theory and the finite element method, the wear behaviour of shape memory alloys is examined against that of stainless steels through analyzing the maximum contact pressure and the plastic deformation. Our investigation indicates that the contribution of superelasticity to the high wear resistance of NiTi is directly linked to the low transformation stress and the large recoverable transformation strain. Furthermore, the low Young's modulus of this alloy also plays an important role to reduce the maximum contact pressure and therefore reduce the wear rate. Additionally, the high plastic yield strength of transformed martensite NiTi enhances its wear resistance further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A coarse-grained W–25%Cu composite is subjected to high pressure torsion (HPT) at room temperature, 200 °C, and 400 °C, to different very large strains. The evolution of microstructure with increasing strain is investigated. It is shown that the HPT causes a strong refinement of W particles. No significant influence of the deformation temperature on the microstructure is revealed at small strains (64). A strong effect of the HPT temperature on the microstructure is found at larger strains (>64). It is demonstrated that the HPT can be successfully used to fabricate a W–25%Cu nanocomposite.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High purity Al single crystals of the (011)[011] orientation have been deformed in plane strain compression in a channel die. Deformation was carried out at a strain rate of 0.01 s−1 to true strains of 0.5 and 1.0, and at temperatures of 25, 200 and 300 °C. The as-deformed microstructure has been characterized using electron backscattered diffraction (EBSD) and X-ray diffraction (XRD). No recrystallization was detected after deformation, and the deformation texture analysis showed that the stability of the orientation decreased with increasing temperature, contrary to reports for other orientations.

Annealing was carried out for various times at 300 °C. Nucleation of recrystallization exhibited periodicity, with distinct bands of recrystallized grains forming parallel to the transverse direction. This recrystallized microstructure has been examined using EBSD. A model is proposed to account for the origin of the periodicity of nucleation and the retention of rods or cylinders of unrecrystallized material after significant annealing times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafine ferrite can be formed in steels through relatively simple thermomechanical processes. The ferrite nucleates intragranularly within the austenite grain on deformation features, which are favoured by heavy shear and large effective strains. It is also possible to produce ultrafine microstructures under multipass deformation conditions, although these may be due to dynamic recovery rather than strain induced transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Middle Permian Wandrawandian Siltstone at Warden Head near Ulladulla in the southern Sydney Basin is dominated by fossiliferous siltstone and mudstone, with a large amount of dropstones (lonestones) and some pebbly sandstone beds. Two general types of deposits are recognised from the cliff succession in view of the timing and mechanism of their formation. One is represented by the background (or primary) deposits of offshore to slope environments with abundant dropstones of glacial marine origin. This facies occurs throughout the cliff sections at Warden Head. The second type is distinguished by secondary, soft-sediment deformational deposits and structures of the primary (background) deposits, and comprises three successive layers of sandy mudstone dikes. In the second type of deposit, metre scale, laterally extensive syn-depositional slump deformation structures occur extensively in the middle part of the Wandrawandian Siltstone. The deformation structures vary in morphology and pattern, including large-scale complex-type folds, flexural stratification, concave-up structures, small-magnitude -faults accompanied by folding and brecciation. The slumps and associated syn-depositional structures are herein attributed to penecontemporaneous deformations of soft sediments (mostly mud and silty mud), formed as a result of mass movement of unconsolidated and/or semi-consolidated substrate following earthquake events. The occurrence of the earthquake event deposits (or seismites) at Warden Head supports the current view that the Sydney Basin was located in a back-arc setting near the New England magmatic arc on an active continental margin during the Middle Permian, and the timing of the earthquake events is here interpreted to indicate the onset of the Hunter Bowen Orogeny in the southern Sydney Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the role of working conditions in predicting the psychological health, job satisfaction, organisational commitment and intention to quit of employees working in an industry sector that had undergone large-scale organisational change. The working conditions were assessed using an augmented job strain model- whereby job demand, job control and social support had been augmented by industry-specific stressors - and the psychological contract model. The results of regression analyses indicate that social support was predictive of all of the outcome measures. Job control and the honouring of psychological contracts were both predictive of job satisfaction and commitment, Furthermore, job satisfaction and organisational commitment were found to mediate the relationship between working conditions and intention to quit. Collectively, these findings suggest that strategies aimed at combating the negative effects of organisational change could be enhanced by addressing several variables represented in the models - particularly social support, job control and psychological contracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel single-pass hot strip rolling process has been developed in which ultra-fine (<2 μm) ferrite grains form at the surface of hot rolled strip in two low carbon steels with average austenite grain sizes above 200 μm. Two experiments were performed on strip that had been re-heated to 1250°C for 300 s and air-cooled to the rolling temperatures. The first involved hot rolling a sample of 0.09 wt.%C–1.68Mn–0.22Si–0.27Mo steel (steel A) at 800°C, which was just above the Ar3 of this sample, while the second involved hot rolling a sample of 0.11C–1.68Mn–0.22Si steel (steel B) at 675°C, which is just below the Ar3 temperature of the sample. After air cooling, the surface regions of strip of both steel A and B consisted of ultra-fine ferrite grains which had formed within the large austenite grains, while the central regions consisted of a bainitic microstructure. In the case of steel B, a network of allotriomorphic ferrite delineated the prior-austenite grain boundaries throughout the strip cross-section. Based on results from optical microscopy and scanning/transmission electron microscopy, as well as bulk X-ray texture analysis and microtextural analysis using Electron Back-Scattered Diffraction (EBSD), it is shown that the ultra-fine ferrite most likely forms by a process of rapid intragranular nucleation during, or immediately after, deformation. This process of inducing intragranular nucleation of ferrite by deformation is referred to as strain-induced transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An austenitic Ni-30 wt pct Fe alloy, with a stacking-fault energy and deformation characteristics similar to those of austenitic low-carbon steel at elevated temperatures, has been used to examine the defect substructure within austenite deformed by single-pass strip rolling and to identify those features most likely to provide sites for intragranular nucleation of ultrafine ferrite in steels. Samples of this alloy and a 0.095 wt pct C-1.58Mn-0.22Si-0.27Mo steel have been hot rolled and cooled under similar conditions, and the resulting microstructures were compared using transmission electron microscopy (TEM), electron diffraction, and X-ray diffraction. Following a single rolling pass of ∼40 pct reduction of a 2mm strip at 800 °C, three microstructural zones were identified throughout its thickness. The surface zone (of 0.1 to 0.4 mm in depth) within the steel comprised a uniform microstructure of ultrafine ferrite, while the equivalent zone of a Ni-30Fe alloy contained a network of dislocation cells, with an average diameter of 0.5 to 1.0 µm. The scale and distribution and, thus, nucleation density of the ferrite grains formed in the steel were consistent with the formation of individual ferrite nuclei on cell boundaries within the austenite. In the transition zone, 0.3 to 0.5 mm below the surface of the steel strip, discrete polygonal ferrite grains were observed to form in parallel, and closely spaced “rafts” traversing individual grains of austenite. Based on observations of the equivalent zone of the rolled Ni-30Fe alloy, the ferrite distribution could be correlated with planar defects in the form of intragranular microshear bands formed within the deformed austenite during rolling. Within the central zone of the steel strip, a bainitic microstructure, typical of that observed after conventional hot rolling of this steel, was observed following air cooling. In this region of the rolled Ni-30Fe alloy, a network of microbands was observed, typical of material deformed under plane-strain conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructure and deformation behavior of the commercial aluminum-based Al7.5%Zn–2.7%Mg–2.3%Cu–0.15%Zr alloy subjected to high pressure torsion (HPT) were studied in the present work. A small grain size less than 100 nm, high level of internal stresses and presence of second phase nanoparticles were revealed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The nanostructured alloy processed by HPT exhibits tensile strength of 800 MPa and ductility of 20% at optimal temperature-strain rate conditions. Unusual influence of a short pre-annealing on tensile strength and ductility of as-processed alloy is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of possibilities given by the developed Cellular Automata–Finite Element (CAFE) multi-scale model for prediction of the initiation and propagation of micro-shear bands and shear bands in metallic materials subjected to plastic deformation is described in the paper. Particular emphasis in defining the criterion for initiation of micro-shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of those phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi-scale model of strain localization. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the paper. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is presented in the paper as well. In this approach remeshing becomes possible and mesh distortion, which limits application of the CAFE method to simple deformation processes, is eliminated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inspection of pre-polished surfaces of Mg–3Al–1Zn hot-rolled plate following 5% uniaxial compression revealed a distinctive heterogeneous deformation pattern. The pattern differed depending on the face examined. The greater share of the strain was born by regions characterized by grains considerably finer than the average. These regions displayed a favourable alignment for basal slip and were probably formed by shear banding during previous rolling. It is clear that local orientation softening leads to inhomogeneous deformation despite local grain size-hardening and twin activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To compare hippocampal surface structure, using large deformation high dimensional mapping (HDM-LD), in subjects with temporal lobe epilepsy (TLE) with (HS+ve) and without (HS−ve) hippocampal sclerosis.

Methods
: The study included 30 HS−ve subjects matched with 30 HS+ve subjects from the previously reported epilepsy patient cohort. To control for normal right–left asymmetries of hippocampal surface structure, subjects were regrouped based on laterality of onset of epileptic seizures and presence of HS. Gender ratio, age, duration of epilepsy and seizure frequency were calculated for each of the four groups. Final HDM-LD surface maps of the right and left TLE groups were compared to define differences in subregional hippocampal involvement within the groups.

Results
: There were no significant differences in comparisons of the left TLE (left HS−ve compared with HS+ve) or right TLE (right HS−ve compared with HS+ve) groups with respect to age, duration of epilepsy or seizure severity scores. HDM-LD maps showed accentuated surface changes over the lateral hippocampal surface, in the region of the Sommer sector, in the hippocampi affected by HS. However, HS−ve hippocampi showed maximal surface changes in a different pattern, and did not involve the region of Sommer sector.

Conclusion
: We conclude that differences in segmental volume loss between the HS−ve and HS+ve groups are suggestive that the underlying pathophysiology of hippocampal changes in the two groups is different, and not related to chronic seizure duration or severity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure evolution during hot deformation of a 23Cr-5Ni-3Mo duplex stainless steel was investigated in torsion. The presence of a soft δ ferrite phase in the vicinity of austenite caused strain partitioning, with accommodation of more strain in the δ ferrite. Furthermore, owing to the limited number of austenite/austenite grain boundaries, the kinetics of dynamic recrystallisation (DRX) in austenite was very slow. The first DRX grains in the austenite phase formed at a strain beyond the peak and proceeded to <15% of the microstructure at the rupture strain of the sample. On the other hand, the microstructure evolution in δ ferrite started by formation of low angle grain boundaries at low strains and the density of these boundaries increased with increasing strain. There was clear evidence of continuous dynamic recrystallisation in this phase at strains beyond the peak. However, in the δ ferrite phase at high strains, most grains consisted of δ/δ and δ/γ boundaries.