57 resultados para Inland waterways


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The folding of proteins is usually studied in dilute aqueous solutions of controlled pH, but it has recently been demonstrated that reversible unfolding can occur in other media. Particular stability is conferred on the protein (folded or unfolded) when the process occurs in ‘protic ionic liquids’ (pILs) of controlled proton activity. This activity (‘effective pH’) is determined by the acid and base components of the pIL and is characterized in the present study by the proton chemical shift of the N–H proton. Here we propose a ‘refoldability’ or ‘refolding index’ (RFI) metric for assessing the stability of folded biomolecules in different solvent media, and demarcate high RFI zones in hydrated pIL media using ribonuclease A and hen egg white lysozyme as examples. Then we show that, unexpectedly, the same high RFIs can be obtained in pIL media that are 90% inorganic in character (simple ammonium salts). This leads us to a conjecture related to the objections that have been raised to ‘primordial soup’ theories for biogenesis, objections that are based on the observation that all the bonds involved in biomacromolecule formation are hydrolyzed in ordinary aqueous solutions unless specifically protected. The ingredients for primitive ionic liquids (NH3, CO, HCN, CO2, and water) were abundant in the early earth atmosphere, and many experiments have shown how amino acids could form from them also. Cyclical concentration in evaporating inland seas could easily produce the type of ambient-temperature, non-hydrolyzing, media that we have demonstrated here may be hospitable to biomolecules, and that may be actually encouraging of biopolymer assembly. Thus a plausible variant of the conventional ‘primordial soup’ model of biogenesis is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nine short stories that move between Victoria’s Little Desert, Sydney’s Kings Cross, Japan’s Inland Sea, Okinawa and Los Angeles, 19th century Budapest, post-war Berlin… and a fantastical landscape of a far-flung future, this collection is an exciting contribution to international and Australian writing about place.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discharging the nutrient rich aquaculture effluents into inland water bodies and oceans is becoming a serious concern due to the adverse effect that brings in the form of eutrophication and subsequent damages to those waters. A laboratory scale biological reactor consisting of a denitrifying compartment followed by a submerged membrane bioreactor (SMBR) compartment was used to treat 40 L d−1 of aquaculture effluent with an average concentration of 74 mg L−1 nitrate (NO3 − ). Sugar was added to the aquaculture effluent in order that to enter into the denitrifying compartment at a carbon: nitrogen ratio (C:N) of 2:1 and 4:1. A hollow fibre membrane with a pore size of 0.4 μm and a filtration area of 0.20 m2 was used in the SMBR and was operated at an average flux of 0.20 m3 m−2 d−1. An intermittent suction period of 12 min followed by a relaxation period of 3 min was maintained in the SMBR throughout the experiment. Different aeration rates of 1, 3, 5 and 10 Lpm were applied to the SMBR to determine the rate of membrane fouling and 5 Lpm aeration rate was found to be optimum with respect to the rate of fouling of membrane at a C:N ratio of 4:1. The average rate of fouling at 1, 3, 5 and 10 Lpm were 1.17, 0.70, 0.48 and 0.52 kPa d−1, respectively. The increase in the rate of fouling when the aeration was increased from 5 to 10 Lpm may be due to the breakage of suspended particles into finer particles which could have increased the fouling of membrane. It was also found that increasing the C:N ratio from 2:1 to 4:1 resulted in more cake being formed on the membrane surface as well as an increase in the reduction of NO3 − from 64% to 78%. Preliminary calculations show that 2.4 to 3.2 g of suspended solids could be accumulated per square meter of membrane surface before physical cleaning of membrane is required (at a transmembrane pressure of 20 kPa).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Box-Ironbark forests extend across a swathe of northern Victoria on the inland side of the Great Dividing Range. Although extensively cleared and modified, they support a distinctive suite of plants and animals. Historical fire regimes in this ecosystem are largely unknown, as are the effects of fire on most of the biota. However, knowledge of the ecological attributes of plant species has been used to determine minimum and maximum tolerable fire intervals for this ecosystem to guide current fire management. Here, we consider the potential effects of planned fire in the context of major ecological drivers of the current box-ironbark forests: namely, the climate and physical environment; historical land clearing and fragmentation; and extractive land uses. We outline an experimental management and research project based on application of planned burns in different seasons (autumn, spring) and at different levels of burn cover (patchy, extensive). A range of ecological attributes will be monitored before and after burns to provide better understanding of the landscape-scale effects of fire in box-ironbark forests. Such integration of management and research is essential to address the many knowledge gaps in fire ecology, particularly in the context of massively increased levels of planned burning currently being implemented in Victoria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late (2012) is one of a series of works investigating the relationship between artist and ideas of liminality and location. This work was produced in inland Queensland, and invited to be exhibited as a shortlisted group of artists in the Bayton Awards, for the Rockhampton City Gallery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In spite of all the debates and controversies, a global consensus has been reached that climate change is a reality and that it will impact, in diverse manifestations that may include increased global temperature, sea level rise, more frequent occurrence of extreme weather events, change in weather patterns, etc., on food production systems, global biodiversity and overall human well being. Aquaculture is no exception. The sector is characterized by the fact that the organisms cultured, the most diverse of all farming systems and in the number of taxa farmed, are all poikilotherms. It occurs in fresh, brackish and marine waters, and in all climatic regimes from temperate to tropical. Consequently, there are bound to be many direct impacts on aquatic farming systems brought about by climate change. The situation is further exacerbated by the fact that certain aquaculture systems are dependent, to varying degrees, on products such as fishmeal and fish oil, which are derived from wild-caught resources that are subjected to reduction processes. All of the above factors will impact on aquaculture in the decades to come and accordingly, the aquatic farming systems will begin to encounter new challenges to maintain sustainability and continue to contribute to the human food basket. The challenges will vary significantly between climatic regimes. In the tropics, the main challenges will be to those farming activities that occur in deltaic regions, which also happen to be hubs of aquaculture activity, such as in the Mekong and Red River deltas in Viet Nam and the Ganges-Brahamaputra Delta in Bangladesh. Aquaculture in tropical deltaic areas will be mostly impacted by sea level rise, and hence increased saline water intrusion and reduced water flows, among others. Elsewhere in the tropics, inland cage culture and other aquaculture activities could be impacted by extreme weather conditions, increased upwelling of deoxygenated waters in reservoirs, etc., requiring greater vigilance and monitoring, and even perhaps readiness to move operations to more conducive areas in a waterbody. Indirect impacts of climate change on tropical aquaculture could be manifold but are perhaps largely unknown. The reproductive cycles of a great majority of tropical species are dependent on monsoonal rain patterns, which are predicted to change. Consequently, irrespective of whether cultured species are artificially propagated or not, changes in reproductive cycles will impact on seed production and thereby the whole grow-out cycle and modus operandi of farm activities. Equally, such impacts will be felt on the culture of those species that are based on natural spat collection, such as that of many cultured molluscs. In the temperate region, global warming could raise temperatures to the upper tolerance limits of some cultured species, thereby making such culture systems vulnerable to high temperatures. New or hitherto non-pathogenic organisms may become virulent with increases in water temperature, confronting the sector with new, hitherto unmanifested and/or little known diseases. One of the most important indirect effects of climate change will be driven by impacts on production of those fish species that are used for reduction, and which in turn form the basis for aquaculture feeds, particularly for carnivorous species. These indirect effects are likely to have a major impact on some key aquaculture practices in all climatic regimes. Limitations of supplies of fishmeal and fish oil and resulting exorbitant price hikes of these commodities will lead to more innovative and pragmatic solutions on ingredient substitution for aquatic feeds, which perhaps will be a positive result arising from a dire need to sustain a major sector. Aquaculture has to be proactive and start addressing the need for adaptive and mitigative measures. Such measures will entail both technological and socio-economic approaches. The latter will be more applicable to small-scale farmers, who happen to be the great bulk of producers in developing countries, which in turn constitute the “backbone’ of global aquaculture. The sociological approaches will entail the challenge of addressing the potential climate change impacts on small farming communities in the most vulnerable areas, such as in deltaic regions, weighing the most feasible adaptive options and bringing about the policy changes required to implement these adaptive measures economically and effectively. Global food habits have changed over the years. We are currently in an era where food safety and quality, backed up by ecolabelling, are paramount; it was not so 20 years ago. In the foreseeable future, we will move into an era where consumer consciousness will demand that farmed foods of every form will have to include in their labeled products the green house gas (GHG) emissions per unit of produce. Clearly, aquaculture offers an opportunity to meet these aspirations. Considering that about 70 percent of all finfish and almost 100 percent of all molluscs and seaweeds are minimally GHG emitting, it is possible to drive aquaculture as the most GHG-friendly food source. The sector could conform to such demands and continue to meet the need for an increasing global food fish supply. However, to achieve this, a paradigm shift in our seafood consumption preferences will be needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term records of nesting numbers, or proxies to nesting numbers, show a precipitous decline in the size of many sea turtle populations. Population declines are most frequently attributed to fisheries bycatch, although direct quantification of this level of mortality is rare. We used satellite-tracking records for turtles in the Mediterranean Sea and Pacific, Atlantic and Indian Oceans to identify when turtles had been captured. Evidence for capture came from a combination of an increase in good quality locations from transmitters, transmitters moving inland to coastal towns and villages, and on-board submergence data, showing that transmitters had come out of the water. A high level of mortality was calculated, confirming current concerns regarding the outlook for sea turtles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Qasmonauts skin––skein––senses At night, or darkly through glass: lunar Qatar––moon-struck--touched by the moon, Nation of qasmonauts, furling and unfurling, inland seas Qasmo-nautical (space ships!), flights of falcons––fonts of fancy. Skin of sky, skein of sand, skin of skein, space On my tongue… sand-grit in the lines of my hands. Writing gets in your eyes. Patrick West

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contrast to well-studied Northern Hemisphere birds with spatially and temporally predictable seasonal migrations, waterbirds in desert biomes face major challenges in exploiting stochastic, rich, yet short-lived resource pulses in vast arid landscapes, leading to the evolution of nomadic behaviour. An extreme example is the banded stilt (Cladorhynchus leucocephalus), an opportunistic colonial breeder at remote inland salt lakes after infrequent rain events. Using satellite telemetry on 21 birds (tracked for a mean of 196.2 days), we reveal extensive, rapid and synchronized movement among individuals to and from salt lakes. Two birds left coastal refugia for the inland following rain, flying 1000-2000 km, while 12 others rapidly moved a mean of 684 km (range 357-1298 km) away from drying inland sites to the coast. Two individuals moved longitudinally across the continent, departing and arriving at the same points, yet travelling very different routes; one bird moving more than 2200 km in less than 2.5 days, the other more than 1500 km in 6 days. Our findings reveal movements nearly twice as long and rapid as recorded in other desert waterbirds. We reveal capability to rapidly detect and exploit ephemeral wetland resource pulses across the stochastic Australian desert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Archaeology’s ability to generate long-term datasets of natural and human landscape change positions the discipline as an inter-disciplinary bridge between the social and natural sciences. Using a multi-proxy approach combining archaeological data with palaeoenvironmental indicators embedded in coastal sediments, we outline millennial timescales of lowland landscape evolution in the Society Islands. Geomorphic and cultural histories for four coastal zones on Mo‘orea are reconstructed based on stratigraphic records, sedimentology, pollen analysis, and radiocarbon determinations from mid- to late Holocene contexts. Prehuman records of the island’s flora and fauna are described utilizing landsnail, insect, and botanical data, providing a palaeo-backdrop for later anthropogenic change. Several environmental processes, including sea level change, island subsidence, and anthropogenic alterations, leading to changes in sedimentary budget have operated on Mo‘orea coastlines from c. 4600 to 200 BP. We document significant transformation of littoral and lowland zones which obscured earlier human activities and created significant changes in vegetation and other biota. Beginning as early as 440 BP (1416–1490 cal. ad), a major phase of sedimentary deposition commenced which can only be attributed to anthropogenic effects. At several sites, between 1.8 and 3.0 m of terrigenous sediments accumulated within a span of two to three centuries due to active slope erosion and deposition on the coastal flats. This phase correlates with the period of major inland expansion of Polynesian occupation and intensive agriculture on the island, indicated by the presence of charcoal throughout the sediments, including wood charcoal from several economically important tree species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decreases in shorebird populations are increasingly evident worldwide, especially in the East Asian–Australasian Flyway (EAAF). To arrest these declines, it is important to understand the scale of both the problem and the solutions. We analysed an expansive Australian citizen-science dataset, spanning the period 1973 to 2014, to explore factors related to differences in trends among shorebird populations in wetlands throughout Australia. Of seven resident Australian shorebird species, the four inland species exhibited continental decreases, whereas the three coastal species did not. Decreases in inland resident shorebirds were related to changes in availability of water at non-tidal wetlands, suggesting that degradation of wetlands in Australia’s interior is playing a role in these declines. For migratory shorebirds, the analyses revealed continental decreases in abundance in 12 of 19 species, and decreases in 17 of 19 in the southern half of Australia over the past 15 years. Many trends were strongly associated with continental gradients in latitude or longitude, suggesting some large-scale patterns in the decreases, with steeper declines often evident in southern Australia. After accounting for this effect, local variables did not explain variation in migratory shorebird trends between sites. Our results are consistent with other studies indicating that decreases in migratory shorebird populations in the EAAF are most likely being driven primarily by factors outside Australia. This reinforces the need for urgent overseas conservation actions. However, substantially heterogeneous trends within Australia, combined with declines of inland resident shorebirds indicate effective management of Australian shorebird habitat remains important.