76 resultados para Hydrogen bonding.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mol­ecule of the title compound, C11H20N2O3S, contains a positively charged imidazolium head group and a negatively charged sulfonate tethered together by a four-carbon chain. There is weak intermolecular hydrogen bonding within the structure between the sulfonate O atoms and the H atoms of the imidazolium ring. The sulfonate group causes a twisting of the butyl chain and a decrease in the dihedral angle between the second and third carbon chain compared to the unsubstituted butyl group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differences between alkyl, dipole–dipole, hydrogen bonding, and π-π selective surfaces represented by non-resonance and resonance π-stationary phases have been assessed for the separation of ‘Ristretto’ café espresso by employing 2DHPLC techniques with C18 phase selectivity detection. Geometric approach to factor analysis (GAFA) was used to measure the detected peaks (N), spreading angle (β), correlation, practical peak capacity (np) and percentage usage of the separations space, as an assessment of selectivity differences between regional quadrants of the two-dimensional separation plane. Although all tested systems were correlated to some degree to the C18 dimension, regional measurement of separation divergence revealed that performance of specific systems was better for certain sample components. The results illustrate that because of the complexity of the ‘real’ sample obtaining a truly orthogonal two-dimensional system for complex samples of natural origin may be practically impossible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the aggregation, ageing and transport properties of surface modified silica dispersions in DMSO by photon correlation spectroscopy and conductivity measurements. The surface modification introduces Li+-ions that dissociate in the dispersion creating a single Li+-ion conducting electrolyte. We show that the surface modification changes the aggregation and ageing properties of the material. There is a pronounced ageing observed for the modified silica dispersions. At high concentrations of fumed silica a gel state is found, which in the case of the surface modified silica is a very weak gel that can be rejuvenated by ultrasonic treatment. The key parameter controlling the aggregation in this system is hydrogen bonding and the surface modification results in a very low number of sites for hydrogen bonding. In addition there is a contribution from repulsive electrostatic interactions in the surface modified silica dispersions due to the highly charged surfaces of these particles. Furthermore, the Li+-ion diffusion, at low silica concentration, is three orders of magnitude faster than that of the silica particles and in the gel state the silica particles are immobile. We also find that the Li+-ion diffusion is virtually independent of the silica concentration in the dispersions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This critical review focuses on the development of anion sensors, being either fluorescent and/or colorimetric, based on the use of the 1,8-naphthalimide structure; a highly versatile building unit that absorbs and emits at long wavelengths. The review commences with a short description of the most commonly used design principles employed in chemosensors, followed by a discussion on the photophysical properties of the 4-amino-1,8-naphthalimide structure which has been most commonly employed in both cation and anion sensing to date. This is followed by a review of the current state of the art in naphthalimide-based anion sensing, where systems using ureas, thioureas and amides as hydrogen-bonding receptors, as well as charged receptors have been used for anion sensing in both organic and aqueous solutions, or within various polymeric networks, such as hydrogels. The review concludes with some current and future perspectives including the use of the naphthalimides for sensing small biomolecules, such as amino acids, as well as probes for incorporation and binding to proteins; and for the recognition/sensing of polyanions such as DNA, and their potential use as novel therapeutic and diagnostic agents (95 references).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural wool/cellulose blends were prepared in an ionic liquid green solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl) and the films were formed subsequently from the coagulated solutions. The wool/cellulose blend films show significant improvement in thermal stability compared to the coagulated wool and cellulose. Moreover, the blend films exhibited an increasing trend of tensile strength with increase in cellulose content in the blends which could be used for the development of wool-based materials with improved mechanical properties, and the elongations of the blends were considerably improved with respect to the coagulated films of wool and cellulose. It was found that there was hydrogen bonding interaction between hydroxyl groups of wool and cellulose in the coagulated wool/cellulose blends as determined by Fourier transform infrared (FTIR) spectroscopy. The ionic liquid was completely recycled with high yield and purity after the blend film was prepared. This work presents a green processing route for development of novel renewable blended materials from natural resource with improved properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small angle X-ray scattering (SAXS) is essential for the morphological investigation of nanostructured systems as it is a bulk sampling technique and provides information about the overall distribution of the components in the system. In our study we have used SAXS to identify various ordered and disordered morphologies in block copolymer modified epoxy thermosets. We have used a reactive block copolymer and hydrogen bonding block copolymer to modify epoxy resin (ER) to see the effect of various blocks on the morphological changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report microphase separation induced by competitive hydrogen bonding interactions in double crystalline diblock copolymer/homopolymer blends of poly(ethylene oxide)-block-poly(ɛ-caprolactone) (PEO-b-PCL) and poly(4-vinyl phenol) (PVPh). The diblock copolymer PEO-b-PCL consists of two immiscible crystallizable blocks wherein both PEO and PCL blocks can form hydrogen bonds with PVPh. In these A-b-B/C diblock copolymer/homopolymer blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically PVPh and PEO block interact strongly whereas PVPh and PCL block interact weakly. The TEM and SAXS results show that the cubic PEO-b-PCL diblock copolymer changes into ordered hexagonal cylindrical morphology upon addition of 20 wt % PVPh followed by disordered bicontinuous phase in the blend with 40 wt % PVPh and then to homogenous phase at 60 wt% PVPh and above. Up to 40 wt % PVPh there is only weak interaction between PVPh and PCL due to the selective hydrogen bonding between PVPh and PEO. However, with higher PVPh concentration, the blends become homogeneous since a sufficient amount of PVPh is available to form hydrogen bonds with both PEO and PCL. A structural model was proposed to explain the self-assembly and morphology of these blends based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interaction between each block of the block copolymer and the homopolymer (1-3).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report biorenewable plastics developed from natural resources such as cellulose, wool and microorganismsynthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer [1-3]. Novel materials were prepared by blending these natural polymers in an ionic liquid green solvent, 1-butyl-3-methylimidazolium chloride. Cellulose /PHBV blend materials were successfully prepared in this way. The ionic liquid was completely recycled with high yield and purity after the processing. The blend materials can be processed into different solid forms such as films, noodle-like fibers and bulk blocks. It was found that there exists hydrogen bonding interaction between the components which facilities the mixing of these polymers. The cellulose/PHBV blend materials all show phase-separated structure as revealed by micro ATR-FTIR imaging (Figure 1) and scanning electron microscopy (SEM). The PHBV domains of 6 - 8 µm are distributed in a cellulose matrix at high concentrations of cellulose while the blend materials with high PHBV concentrations exhibit multiphase morphologies, including beadlike PHBV microdomains in the range of 300-400 nm. The dispersion of PHBV in cellulose leads to significant improvement in hydrophobicity due to its beadlike structure. The blend materials represent a class of degradable plastics from natural bioresources using the ionic liquid green solvent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five halogen-free orthoborate salts comprised of three different cations (cholinium, pyrrolidinium and imidazolium) and two orthoborate anions, bis(mandelato)borate and bis(salicylato)borate, were synthesised and characterised by DSC, X-ray diffraction and NMR. DSC measurements revealed that glass transition points of these orthoborate salts are in the temperature range from −18 to −2 °C. In addition, it was found that [EMPy][BScB] and [EMIm][BScB] salts have solid–solid phase transitions below their melting points, i.e. they exhibit typical features of plastic crystals. Salts of the bis(salicylato)borate anion [BScB]− have higher melting points compared with corresponding salts of the bis(mandelato)borate anion [BMB]−. Single crystal X-ray diffraction crystallography (for [Chol][BScB] crystals) and solid-state multinuclear (13C, 11B and 15N) NMR spectroscopy were employed for the structural characterisation of [Chol][BScB], [EMPy][BScB] and [EMIm][BScB], which are solids at room temperature: a strong interaction between [BScB]− anions and [Chol]+ cations was identified as (i) hydrogen bonding between OH of [Chol]+ and carbonyl groups of [BScB]− and (ii) as the inductive C–Hπ interaction. In the other salt, [EMIm][BScB], anions exhibit ππ stacking in combination with C–Hπ interactions with [EMIm]+ cations. These interactions were not identified in [EMPy][BScB] probably because of the lack of aromaticity in cations of the latter system. Our data on the formation of a lanthanum complex with bis(salicylato)borate in the liquid mixture of La3+(aq) with [Chol][BScB] suggest that this class of novel ILs can be potentially used in the extraction processes of metal ions of rare earth elements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study describes the synthesis of five novel C2-symmetric organocatalysts that facilitate the on-water asymmetric aldol reaction at low catalyst loading (1 mol%) without the use of additives. Each catalyst is composed of two diprolinamide units joined by a symmetric alkyl bridging group allowing for systematic modulation of catalytic site proximity. Typically, catalysts in this manuscript which bear the catalytic units in close proximity gave the best reaction outcomes in terms of conversion (up to >99%), diastereomeric ratio (4/96, syn/anti) and enantiomeric excess (up to 97%). This effect has been attributed to the assembly of a chiral pocket, facilitated by hydrogen bonding at the oil-in-water interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aymmetric unit of the title compound, C8H18N+·Cl -, consists of one crystallographically independent 1-methyl-1-propyl-pyrrolidinium cation and one chloride anion, both of which lie in general positions. Minor hydrogen-bonded C - H⋯Cl inter-actions occur. However, no classical hydrogen bonding is observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions. © 2014 Biophysical Society.