52 resultados para Hydraulic jacks


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) is a Takagi-Sugeno-type fuzzy inference system for online learning which can be applied for dynamic time series prediction. To the best of our knowledge, this is the first time that DENFIS has been used for rainfall-runoff (R-R) modeling. DENFIS model results were compared to the results obtained from the physically-based Storm Water Management Model (SWMM) and an Adaptive Network-based Fuzzy Inference System (ANFIS) which employs offline learning. Data from a small (5.6 km2) catchment in Singapore, comprising 11 separated storm events were analyzed. Rainfall was the only input used for the DENFIS and ANFIS models and the output was discharge at the present time. It is concluded that DENFIS results are better or at least comparable to SWMM, but similar to ANFIS. These results indicate a strong potential for DENFIS to be used in R-R modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of experiments investigating geochemical changes during artificial recharge of treated wastewater at a coastal sandfill, reclaimed with sand dredged from the seabed, are reported in this paper. Laboratory batch experiments were conducted using secondary effluent (SE) and SE treated with an additional ultrafiltration process (UF), and wastewater treated by reverse osmosis (RO) process, mixed with surface sand obtained from the sandfill. Experiments with RO showed a net increase of 0.41 meq/L, 0.12 meq/L and 0.31 meq/L for Ca(2 + ), Mg(2 + ) and HCO(3) (-), respectively. UF and SE also exhibited net increase in Ca(2 + ), Mg(2 + ) and HCO(3) (-) indicating carbonate mineral dissolution. All three waters were found to be over-saturated with respect to calcite. Carbonate dissolution reactions were observed in the field experiments. However, the presence of imported clays from the borrow source gave rise to ion exchange reactions where Na(+) attached to the clay particles were exchanged for Ca(2 + ) and Mg(2 + ) inducing mineral dissolution, driven by sub-saturation conditions. This resulted in an increase in pH with maximum values in excess of 9.0. It was also found that the sodium adsorption ratio remained high (>10) even after the groundwater had been diluted sufficiently to freshwater levels (ionic strength, I <0.015) indicating a potential for the dispersion of clay particles. This could have a deleterious consequence on porosity and hydraulic conductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results obtained from a hybrid neural network—finite element model are reported in this paper. The hybrid model incorporates artificial neural network (ANN) nodes into a numerical scheme, which solves the two-dimensional shallow water equations using finite elements (FE). First, numerical computations are carried out on the entire numerical model, using a larger mesh. The results from this computation are then used to train several preselected ANN nodes. The ANN nodes model the response for a part of the entire numerical model by transferring the system reaction to the location where both models are connected in real time. This allows a smaller mesh to be used in the hybrid ANN-FE model, resulting in savings in computation time. The hybrid model was developed for a river application, using the computational nodes located at the open boundaries to be the ANN nodes for the ANN-FE hybrid model. Real-time coupling between the ANN and FE models was achieved, and a reduction is CPU time of more than 25% was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban lakes are typically smaller, shallower, and more exposed to human activities than natural lakes. Although the effects of harmful algal blooms (HABs) associated with eutrophication in urban lakes has become a growing concern for water resources management and environmental protection, studies focussing on this topic in relation to urban lakes are rare and knowledge of the ecological dynamics and effective management strategies for controlling eutrophication in urban lakes is lacking. This study applied an integrated three-dimensional hydrodynamics-ecological model for a small shallow tropical urban lake in Singapore and evaluated various management scenarios to control eutrophication in the lake. It is found that in-lake treatment techniques including artificial destratification, sediment manipulation and algaecide addition are either ineffective or possess environmental concerns; while watershed management strategies including hydraulic flushing and inflow nutrients reduction are more effective and have posed less environmental concerns. In this study, inflow phosphorus reduction was found to be the best strategy after evaluating the advantages and drawbacks of the management strategies studied. Runoff from the watershed exerts significant influence on urban lakes and thus an integrated water resources management at the watershed level is critical for the control of eutrophication

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predicting hydrogen sulphide concentration in sewer network through modelling tools will be beneficial for many stakeholders to design appropriate mitigation strategies. However, the hydrogen sulphide modelling in a sewer network is crucially dependent on the hydraulic modelling of the sewer. The establishment of precise hydrogen sulphide and hydraulic modelling however requires detailed and accurate information about the sewer network structure and the model parameters. This paper outlines a novel approach for the development of hydraulic and hydrogen sulphide modelling to predict the concentration of hydrogen sulphide in sewer network. The approach combines the calculation of wastewater generation and implementation of flow routing on the EPA SWMM 5.0 platform to allow hydrodynamic simulations. Dynamic wave routing is used for hydraulic simulations. It is considered to be the best approach to route existing/old sewer flow. The build-up of hydrogen sulphide model includes the empirical models of hydrogen sulphide generation and emission. Trial of the model was conducted to simulate a sewer network in Seoul, South Korea with some hypothetical data. Further analysis on the use of chemical dosing on the sewer pipe was also performed by the model. Promising results have been obtained through the model, however calibration and validation of the model is required. The presented methodology provides a possibility of the free platform SWMM to be used as a prediction tool of hydrogen sulphide generation. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sewer odour and corrosion is caused by the reduction of sulphide ions and the release of hydrogen sulphide gas (H2S) into the sewer atmosphere. The reduction of sulphide is determined by its dissipation rate which depends on many processes such as emission, oxidation and precipitation that prevail in wastewater environments. Two factors that mainly affect the dissipation of sulphide are sewer hydraulics and wastewater characteristics; modification to the latter by dosing certain chemicals is known as one of the mitigation strategies to control the dissipation of sulphide. This study investigates the dissipation of sulphide in the presence of NaOH, Mg(OH)2, Ca(NO3)2 and FeCl3 and the dissipation rate is developed as a function of hydraulic parameters such as the slope of the sewer and the velocity gradient. Experiments were conducted in a 18m experimental sewer pipe with adjustable slope to which, firstly no chemical was added and secondly each of the above mentioned chemicals was supplemented in turn. A dissipation rate constant of 2×10-6 for sulphide was obtained from experiments with no chemical addition. This value was then used to predict the sulphide concentration that was responsible for the emission of H2S gas in the presence of one of the above mentioned four chemicals. It was found that the performance of alkali substances (NaOH and Mg(OH)2) in suppressing the H2S gas emission was excellent while ferric chloride showed a moderate mitigating effect due to its slow reaction kinetics. Calcium nitrate was of little value since the wastewater used in this study experienced almost no biological growth. Thus the effectiveness of selected chemicals in suppressing H2S gas emission had the following order: NaOH ≥ Mg(OH)2 ≥ FeCl3 ≥ Ca(NO3)2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Massive, raw concrete structures – the likes of the Telecommunications Building (1972–81) by Janko Konstantinov; the campus of Ss. Cyril and Methodius University (1974) by Marko Musˇicˇ; the National Hydraulic Institute (1972) by Krsto Todorovski; and the Bank Complex (1970) by R. Lalovik and O. Papesˇ – have led to the production of an enduring monumental presence and helped inspire Skopje’s title as the “Brutalist capital of the world”. These works followed Kenzo Tange’s introduction of Japanese Metabolism to Skopje through his role in the 1965 United Nations sponsored reconstruction competition. The unique position of a Non-Aligned Yugoslavia staged and facilitated architectural and professional exchange during the Cold War. Each trajectory and manifestation illustrates the complex picture of international architectural exchange and local production. Skopje and its numerous Brutalist edifices is an elucidative story, because it represents a meeting point between Brutalism, Metabolism and its American parallel. This article discusses, in particular, the Skopje Archive Building (1966) and the “Goce Delcˇev” Student Dormitory (1969) – two buildings designed by the architect Georgi Konstantinovski, realised on his return from a Masters program at Yale University and employment within I. M. Pei’s New York office. Their architecture illustrates the simultaneous preoccupations of leading architects at the time in regaining a conceptual ground made explicit through a complete and apprehensible image. From this particular position, the article explores the question of ethics and aesthetics central to Banham’s outline of the “New Brutalism”.