57 resultados para Hemoglobin Degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal resistance is one of the most dominative properties for polymer materials. Thermal degradation mechanisms of epoxidized natural rubber (ENR) and NR are studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results show that, the introduction of epoxy groups into the NR molecular main chain leads to a remarkable change in the degradation mechanism. The thermal stability of ENR is worse than that of NR. For the first thermooxidative degradation stage, the thermal decomposition mechanism of ENR is similar to that of NR, which corresponds to a mechanism involving one-dimensional diffusion. For the second stage, the thermal decomposition mechanism of ENR is a three-dimensional diffusion, which is more complex than that of NR. Kinetic analysis showed that activation energy (E?), activation entropy (?H) and activation Gibbs energy (?G) values are all positive, indicating that the thermooxidative degradation process of ENR is non-spontaneous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Initially, synergistic reinforcement PVA composite has been successfully developed by using graphene and MMT. Furthermore, new knowledge of the crystallization mechanism of the PVA and PVA composites was revealed. Finally, Isothermal degradation kinetics models and mechanism of the as-prepared composites were also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic coatings have been used in conjunction with cathodic protection as the most economical method of corrosion protection by the oil and gas pipeline industry. In a bid to prolong the life of the pipelines, the degradation and failure of pipeline coatings under the effects of major influencing factors including mechanical stress, the environmental corrosivity and cathodic protection have been extensively investigated over the past decades. This paper provides an overview of recent research for understanding coating degradation under the effect of these factors, either individually or in combination. Electrochemical impedance spectroscopy remains the primary and the most commonly used technique of studying the degradation of organic coatings, although there have been attempts to use other techniques such as electrochemical polarization (both dynamic and static), electrochemical noise, Scanning Kelvin Probe, Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry and Dynamic Mechanical Analyser. Major knowledge and technological gaps in the investigation of the combined effects of mechanical stress, environmental corrosivity and cathodic protection on coating degradation have been identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-envelope proteinases (CEPs) are a class of proteolytic enzymes produced by lactic acid bacteria and have several industrially relevant applications. However, soluble CEPs are economically unfavorable for such applications due to their poor stability and lack of reusability. In a quest to prepare stable biocatalysts with improved performance, CEP from Lactobacillus delbrueckii subsp. lactis 313 and trypsin (as a model enzyme) were immobilized onto nonwoven polyester fabrics in a three-step protocol including ethylenediamine activation and glutaraldehyde crosslinking. Immobilization gave protein loading yields of 21.9% (CEP) and 67.7% (trypsin) while residual activity yields were 85.6% (CEP) and 4.1% (trypsin). The activity of the immobilized enzymes was dependent on pH, but was retained at elevated temperatures (40-70°C). An increase in Km values was observed for both enzymes after immobilization. After 70 days of storage, the immobilized CEP retained ca. 62% and 96% of initial activity when the samples were stored in a lyophilized form at -20°C or in a buffer at 4°C, respectively. Both immobilized CEP and trypsin were able to hydrolyze proteins such as casein, skimmed milk proteins and bovine serum albumin. This immobilization protocol can be used to prepare immobilized biocatalyst for various protein degradation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of coloured effluent treatment is a major issue for the textile industry. In this study, catalyst P25-graphene was prepared and applied for degrading dye from an aqueous solution. Three types of dyes were selected to determine the feasibility of the catalyst for the dye degradation, including sulphonic, azoic, and fluorescent dyes. P25-graphene catalyst showed good ability to degrade all selected dyes. The influence of inorganic salts and surfactants on the photocatalytic degradation of rhodamine B using catalyst P25-graphene was also investigated. The degradation of rhodamine B was suppressed by the presence of NaCl, but the effect of Na2SO4 was negligible. The degradation of rhodamine B was significantly suppressed by all three types of surfactant, namely anionic, cationic and non-ionic surfactants. NMR technique was used to investigate the mechanisms associated with this suppression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to determine whether the development of an increased aerobic capacity (increased potential for oxygen uptake) during the initial growth stages of hatchlings is associated with an increase in blood hemoglobin content. We measured the resting (at thermoneutrality) and maximum (cold induced)b oxygen uptake of Arctic Tern chicks from 0 to 9 days of age. In addition, blood hemoglobin content and hematocrit were measured. The results show that in spite of a marked increase in both resting and maximum oxygen uptake, indicating increased metabolic performance, there was a slight decrease in blood hemoglobin content during the first few days of development. A residual analysis, made to eliminate the effect of age, showed that blood hemoglobin content of individual chicks, blood hemoglobin contents is not a limiting factor for oxygen uptake by Arctic Tern chicks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of encapsulated planar-structured CH3NH3PbI3 (MAPbI3) perovskite solar cells (PSCs) was investigated under various simulated environmental conditions. The tests were performed under approximately one sun (100 mW cm-2) illumination, varying temperature (up to 85 °C cell temperature) and humidity (up to 80%). The application of advanced sealing techniques improved the device stability, but all devices showed significant degradation after prolonged aging at high temperature and humidity. The degradation mechanism was studied by post-mortem analysis of the disassembled cells using SEM and XRD. This revealed that the degradation was mainly due to the decomposition of MAPbI3, as a result of reaction with H2O, and the subsequent reaction of hydroiodic acid, formed during MAPbI3 decomposition, with the silver back contact electrode layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Truss core laminates display stiffness and strength/density ratios superior to those seen in foam cored laminates. However, this superiority is held only for ideal shaped struts. If the truss core is damaged, its performance rapidly decreases towards that of a foam. The present study investigates the stiffness and strength degradation with imposed core deformation/damage. This is done for a pyramidal core structure made by electro-discharge machining from AA5083 alloy. The experiments are compared with finite element predictions. The effect of the strain rate sensitivity is studied by performing the tests at different temperatures and by FE simulations with different material data sets. The results show reasonable agreement between experiments and modeling. The stiffness of a damaged truss core rapidly degrades and reaches the performance levels seen in foams after ≈8% of deformation. The results show that a high strain rate sensitivity significantly influences post-buckling core behavior and is able to decrease the stiffness and strength degradation rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL) proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification using a machine learning approach. Support vector machine (SVM) models were developed for predicting HbL proteins based upon amino acid composition (AC), dipeptide composition (DC), hybrid method (AC + DC), and position specific scoring matrix (PSSM). In addition, we introduce for the first time a new prediction method based on max to min amino acid residue (MM) profiles. The average accuracy, standard deviation (SD), false positive rate (FPR), confusion matrix, and receiver operating characteristic (ROC) were analyzed. We also compared the performance of our proposed models in homology detection databases. The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed for HbL prediction.