158 resultados para HIGH-SALT DIET


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We determined the interaction of diet and exercise-training intensity on membrane phospholipid fatty acid (FA) composition in skeletal muscle from 36 female Sprague-Dawley rats. Animals were randomly divided into one of two dietary conditions: high-carbohydrate (64.0% carbohydrate by energy, n = 18) or high fat (78.1% fat by energy, n = 18). Rats in each diet condition were then allocated to one of three subgroups: control, which performed no exercise training; low-intensity (8 m/min) treadmill run training; or high-intensity (28 m/min) run training. All exercise-trained rats ran 1,000 m/session, 4 days/wk for 8 wk and were killed 48 h after the last training bout. Membrane phospholipids were extracted, and FA composition was determined in the red and white vastus lateralis muscles, Diet exerted a major influence on phospholipid FA composition, with the high-fat diet being associated with a significantly (P < 0.01) elevated ratio of n-6/n-3 FA for both red (2.7-3.2 vs. 1.0-1.1) and white vastus lateralis muscle (2.5-2.9 vs. 1.2). In contrast, alterations in FA composition as a result of either exercise-training protocol were only minor in comparison. We conclude that, under the present experimental conditions, a change in the macronutrient content of the diet was a more potent modulator of skeletal muscle membrane phospholipid FA composition compared with either low- or high-intensity treadmill exercise training.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RATIONALE: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). METHODS AND RESULTS: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-(13)C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring (13)C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography-mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. CONCLUSIONS: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rationale Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-13C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring 13C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic-hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prolonged bed rest is used to simulate the effects of spaceflight and causes disuse-related loss of bone. While bone density changes during bed rest have been described, there are no data on changes in bone microstructure. Twenty-four healthy women aged 25 to 40 years participated in 60 days of strict 6-degree head-down tilt bed rest (WISE 2005). Subjects were assigned to either a control group (CON, n = 8), which performed no countermeasures; an exercise group (EXE, n = 8), which undertook a combination of resistive and endurance training; or a nutrition group (NUT, n = 8), which received a high-protein diet. Density and structural parameters of the distal tibia and radius were measured at baseline, during, and up to 1 year after bed rest by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bed rest was associated with reductions in all distal tibial density parameters (p < 0.001), whereas only distal radius trabecular density decreased. Trabecular separation increased at both the distal tibia and distal radius (p < 0.001), but these effects were first significant after bed rest. Reduction in trabecular number was similar in magnitude at the distal radius (p = 0.021) and distal tibia (p < 0.001). Cortical thickness decreased at the distal tibia only (p < 0.001). There were no significant effects on bone structure or density of the countermeasures (p ≥ 0.057). As measured with HR-pQCT, it is concluded that deterioration in bone microstructure and density occur in women during and after prolonged bed rest. The exercise and nutrition countermeasures were ineffective in preventing these changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In humans, low-energy diets rapidly reduce hepatic fat and improve/normalise glycemic control. Due to difficulties in obtaining human liver, little is known about changes to the lipid species and pathway fluxes that occur under these conditions. Using a combination of stable isotope, and targeted metabolomic approaches we investigated the acute (7–9 days) hepatic effects of switching high-fat high-sucrose diet (HFD) fed obese mice back to a chow diet. Upon the switch, energy intake was reduced, resulting in reductions of fat mass and hepatic triacyl- and diacylglycerol. However, these parameters were still elevated compared to chow fed mice, thus representing an intermediate phenotype. Nonetheless, glucose intolerance and hyperinsulinemia were completely normalized. The diet reversal resulted in marked reductions in hepatic de novo lipogenesis when compared to the chow and HFD groups. Compared with HFD, glycerolipid synthesis was reduced in the reversal animals, however it remained elevated above that of chow controls, indicating that despite experiencing a net loss in lipid stores, the liver was still actively esterifying available fatty acids at rates higher than that in chow control mice. This effect likely promotes the re-esterification of excess free fatty acids released from the breakdown of adipose depots during the weight loss period.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: To examine the relationship between diet quality and depressive symptomology amongst a community-based sample of Fijian adolescents.

METHODS: Participants included 7,237 adolescents (52.6% girls; mean age 15.6 years) at baseline (2005) and 2,948 (56% girls; mean age 17.4 years) at follow-up (2007/2008), from the Pacific Obesity Prevention in Communities Project. Intervention schools (n = 7) were selected from Nasinu, near Suva on the main Fijian island Viti Levu, and comparison schools (n = 11) were chosen from towns on the opposite, west side of the island. A dietary questionnaire was used to measure diet quality. Factor analysis clustered dietary variables into two unique and independent factors, referred to as healthy diet quality and unhealthy diet quality. Depressive symptomology was assessed via the emotional subscale of the Paediatric Quality of Life Inventory. Both measures were self-reported and self-administered. Multiple linear regression was used to test cross-sectional associations (at baseline and follow-up) between diet quality and depressive symptomology. Variables controlled for included gender, age, ethnicity, study condition, BMI-z scores, and physical activity.

FINDINGS: Strong, positive dose-response associations between healthy diet and high emotional scores (lower depressive symptomology) were found in cross-sectional analyses at baseline and follow-up, among boys and girls. No association was found between emotional health and unhealthy diet.

CONCLUSIONS: This study suggests that cross-sectional relationships exist between a high quality diet during adolescence and less depressive symptoms, however more evidence is required to determine if these two variables are linked causally. Trial population health strategies that use dietary interventions as a mechanism for mental health promotion provide an opportunity to further test these associations. If this is indeed a true relationship, these forms of interventions have the potential to be inexpensive and have substantial reach, especially in Low and Middle Income Countries. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12608000345381.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Excess fat consumption has been linked to the development of obesity. Fat and salt are a common and appetitive combination in food; however, the effect of either on food intake is unclear. Fat taste sensitivity has been negatively associated with dietary fat intake, but how fat taste sensitivity influences the intake of fat within a meal has, to our knowledge, not yet been investigated.

OBJECTIVES: Our objectives were, first, to investigate the effects of both fat and salt on ad libitum food intake and, second, to investigate the effects of fat taste sensitivity on satiation responses to fat and whether this was affected by salt.

METHODS: Forty-eight healthy adults [16 men and 32 women, aged 18-54 y, body mass index (kg/m(2)): 17.8-34.4] were recruited and their fat taste sensitivity was measured by determination of the detection threshold of oleic acid (18:1n-6). In a randomized 2 × 2 crossover design, participants attended 4 lunchtime sessions after a standardized breakfast. Meals consisted of elbow macaroni (56%) with sauce (44%); sauces were manipulated to be1) low-fat (0.02% fat, wt:wt)/low-salt (0.06% NaCl, wt:wt),2) low-fat/high-salt (0.5% NaCl, wt:wt),3) high-fat (34% fat, wt:/wt)/low-salt, or4) high-fat/high-salt. Ad libitum intake (primary outcome) and eating rate, pleasantness, and subjective ratings of hunger and fullness (secondary outcomes) were measured.

RESULTS: Salt increased food and energy intakes by 11%, independent of fat concentration (P= 0.022). There was no effect of fat on food intake (P= 0.6), but high-fat meals increased energy intake by 60% (P< 0.001). A sex × fat interaction was found (P= 0.006), with women consuming 15% less by weight of the high-fat meals than the low-fat meals. Fat taste sensitivity was negatively associated with the intake of high-fat meals but only in the presence of low salt (fat taste × salt interaction on delta intake of high-fat - low-fat meals;P= 0.012).

CONCLUSIONS: The results suggest that salt promotes passive overconsumption of energy in adults and that salt may override fat-mediated satiation in individuals who are sensitive to the taste of fat.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High fat diet (HFD)-induced hypertension in rabbits is neurogenic and caused by the central action of leptin, which is thought to be dependent on activation of α-melanocortin-stimulating hormone (α-MSH) and neuropeptide Y-positive neurons projecting to the dorsomedial hypothalamus (DMH) and ventromedial hypothalamus (VMH). However, leptin may act directly in these nuclei. Here, we assessed the contribution of leptin, α-MSH, and neuropeptide Y signaling in the DMH and VMH to diet-induced hypertension. Male New Zealand white rabbits were instrumented with a cannula for drug injections into the DMH or VMH and a renal sympathetic nerve activity (RSNA) electrode. After 3 weeks of an HFD (13.3% fat; n=19), rabbits exhibited higher RSNA, mean arterial pressure (MAP), and heart rate compared with control diet-fed animals (4.2% fat; n=15). Intra-VMH injections of a leptin receptor antagonist or SHU9119, a melanocortin 3/4 receptor antagonist, decreased MAP, heart rate, and RSNA compared with vehicle in HFD rabbits (P<0.05) but not in control diet-fed animals. By contrast, α-MSH or neuropeptide Y injected into the VMH had no effect on MAP but produced sympathoexcitation in HFD rabbits (P<0.05) but not in control diet-fed rabbits. The effects of the leptin antagonist, α-MSH, or neuropeptide Y injections into the DMH on MAP or RSNA of HFD rabbits were not different from those after vehicle injection. α-MSH into the DMH of control diet-fed animals did increase MAP, heart rate, and RSNA. We conclude that the VMH is the likely origin of leptin-mediated sympathoexcitation and α-MSH hypersensitivity that contribute to obesity-related hypertension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To investigate hypothalamic beacon gene expression at various developmental stages in genetically selected diabetes-resistant and diabetes-prone Psammomys obesus. In addition, effects of dietary energy composition on beacon gene expression were investigated in diabetes-prone P. obesus. Methods: Hypothalamic beacon gene expression was measured using TaqmanÔ fluorogenic PCR in 4-, 8- and 16-week-old animals from each genetically selected line. Results: Expression of beacon was elevated in the diabetes-prone compared with diabetes-resistant P. obesus at 4 weeks of age despite no difference in body weight between the groups. At 8 weeks of age, hypothalamic beacon gene expression was elevated in diabetes-prone animals fed a high-energy diet, and was correlated with serum insulin concentration. Conclusion: P. obesus with a genetic predisposition for the development of obesity and type 2 diabetes have elevated hypothalamic beacon gene expression at an early age. Overexpression of beacon may contribute to the development of obesity and insulin resistance in these animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To determine the effect of a high-fat diet on the expression of genes important for fat oxidation, the protein abundance of the transcription factors peroxisome proliferator-activated receptor (PPAR) isoforms α and γ, and selected enzyme activities in type I and II skeletal muscle. Research Methods and Procedures: Sprague-Dawley rats consumed either a high-fat (HF: 78% energy, n = 8) or high-carbohydrate (64% energy, n = 8) diet for 8 weeks while remaining sedentary. Results: The expression of genes important for fat oxidation tended to increase in both type I (soleus) and type II (extensor digitorum longus) fiber types after an HF dietary intervention. However, the expression of muscle type carnitine palmitoyltransferase I was not increased in extensor digitorum longus. Analysis of the gene expression of both peroxisome proliferator-activated receptor-γ coactivator and forkhead transcription factor O1 demonstrated no alteration in response to the HF diet. Similarly, PPARα and PPARγ protein levels were also not altered by the HF diet. Discussion: An HF diet increased the expression of an array of genes involved in lipid metabolism, with only subtle differences evident in the response within differing skeletal muscle fiber types. Despite changes in gene expression, there were no effects of diet on peroxisome proliferator-activated receptor-gamma coactivator and forkhead transcription factor O1 mRNA and the protein abundance of PPARα and PPARγ.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A diet rich in fruits, vegetables, and low-fat dairy foods has been shown to lower blood pressure (BP) when all foods are provided. We compared the effect on BP (measured at home) of 2 different self-selected diets: a low-sodium, high-potassium diet, rich in fruit and vegetables (LNAHK) and a high-calcium diet rich in low-fat dairy foods (HC) with a moderate-sodium, high-potassium, high-calcium DASH-type diet, high in fruits, vegetables and low-fat dairy foods (OD). Subjects were randomly allocated to 2 test diets for 4 wk, the OD and either LNAHK or HC diet, each preceded by a 2 wk control diet (CD). The changes in BP between the preceding CD period and the test diet period (LNAHK or HC) were compared with the change between the CD and the OD periods. Of the 56 men and 38 women that completed the OD period, 43 completed the LNAHK diet period and 48 the HC diet period. The mean age was 55.6 ± 9.9 (±SD) years. There was a fall in systolic pressure between and the CD and OD [-1.8 ± 0.5 mm Hg (P < 0.001)]. Compared with OD, systolic and diastolic BPs fell during the LNAHK diet period [-3.5 ± 1.0 (P < 0.001) and -1.9 ± 0.7 (P < 0.05) mmHg, respectively] and increased during the HC diet period [+3.1 ± 0.9 (P < 0.01) and +0.8 ± 0.6 (P = 0.15) mm Hg, respectively]. A self-selected low-sodium, high-potassium diet resulted in a greater fall in BP than a multifaceted OD, confirming the beneficial effect of dietary intervention on BP in a community setting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to assess the dietary changes that occur for migrants moving from a low-income to a high-income country. The sample included 45 females who had migrated to Australia from Somalia within the past 5years (1996-2001). The data for the study was derived from structured interviews conducted by a bilingual interviewer and anthropometry. Usual dietary intake and frequency of consumption of 54 foods were determined both for Australia (current home) and for Somalia (previous home). In Australia, subjects maintained the structure of the diet from their country of birth. They did increase their consumption of some processed food, such as instant noodles, crisps, and pizza. However, there was little evidence that the subjects adopted ready or partially prepared meals or takeaway meals. A significant addition to the diet in Australia was the use of breakfast cereals. Significant substitutions were of ready-baked bread for traditional bread and lamb for camel meat. The mean BMI of the sample was 27.4kg/m2. Sixty percent of the sample were overweight or obese (BMI>25). Some of the dietary changes observed may be consistent with increased energy intake and altered nutrient density. Given the association between transition to a high-income diet and obesity, it is important that migrants are encouraged to retain the best of their traditional diet while adopting healthy foods from host country.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Consumption of some dietary fibres may benefit bowel health; however, the effect of Australian sweet lupin (Lupinus angustifolius) kernel fibre (LKFibre) is unknown. The present study examined the effect of a high-fibre diet containing LKFibre on bowel function and faecal putative risk factors for colon cancer compared to a control diet without LKFibre. Thirty-eight free-living, healthy men consumed an LKFibre and a control diet for 1 month each in a single-blind, randomized, crossover study. Depending on subject energy intake, the LKFibre diet was designed to provide 17–30 g/d fibre (in experimental foods) above that of the control diet. Bowel function self-perception, frequency of defecation, transit time, faecal output, pH and moisture, faecal levels of SCFA and ammonia, and faecal bacterial [ß]-glucuronidase activity were assessed. In comparison to the control diet, the LKFibre diet increased frequency of defecation by 0·13 events/d (P = 0·047), increased faecal output by 21 % (P = 0·020) and increased faecal moisture content by 1·6 % units (P = 0·027), whilst decreasing transit time by 17 % (P = 0·012) and decreasing faecal pH by 0·26 units (P < 0·001). Faecal butyrate concentration was increased by 16 % (P = 0·006), butyrate output was increased by 40 % (P = 0·002) and [ß]-glucuronidase activity was lowered by 1·4 µmol/h per g wet faeces compared to the control diet (P < 0·001). Addition of LKFibre to the diet incorporated into food products improved some markers of healthy bowel function and colon cancer risk in men.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is a multiadaptor protein with E3-ubiquitin ligase activity residing within its RING finger domain. We have previously reported that c-Cbl–deficient mice exhibit elevated energy expenditure, reduced adiposity, and improved insulin action. In this study, we examined mice expressing c-Cbl protein with a loss-of-function mutation within the RING finger domain (c-CblA/– mice). Compared with control animals, c-CblA/– mice display a phenotype that includes reduced adiposity, despite greater food intake; reduced circulating insulin, leptin, and triglyceride levels; and improved glucose tolerance. c-CblA/– mice also display elevated oxygen consumption (13%) and are protected against high-fat diet–induced obesity and insulin resistance. Unlike c-CblA/– mice, mice expressing a mutant c-Cbl with the phosphatidylinositol (PI) 3-kinase binding domain ablated (c-CblF/F mice) exhibited an insulin sensitivity, body composition, and energy expenditure similar to that of wild-type animals. These results indicate that c-Cbl ubiquitin ligase activity, but not c-Cbl–dependent activation of PI 3-kinase, plays a key role in the regulation of whole-body energy metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On Christmas Island, Indian Ocean, the diet of robber crabs, Birgus latro (Linnaeus) was generally high in fat, storage polysaccharides or protein and largely comprised fruits, seeds, nuts and animal material. The plant items also contained significant amounts of hemicellulose and cellulose. In laboratory feeding trials, crabs had similar intakes of dry matter when fed artificial diets high in either fat or storage polysaccharide, but intake was lower on a high protein diet. Assimilation coefficients of dry matter (69–74%), carbon (72–81%), nitrogen (76–100%), lipid (71–96%) and storage polysaccharide (89–99%) were high on all three diets. B. latro also assimilated significant amounts of the chitin ingested in the high protein diet ( 93%) and hemicellulose (49.6–65%) and cellulose (16–53%) from the high carbohydrate and high fat diets. This is consistent with the presence of chitinase, hemicellulase and cellulase enzymes in the digestive tract of B. latro. The mean retention time (27.2 h) for a dietary particle marker (57Co-labelled microspheres) was longer than measured in leaf-eating land crabs. The feeding strategy of B. latro involves the selection of highly digestible and nutrient-rich plant and animal material and retention of the digesta for a period long enough to allow extensive exploitation of storage carbohydrates, lipids, protein and significant amounts of structural carbohydrates (hemicellulose, cellulose and chitin).