70 resultados para Glucose transporter 4


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laminarinase and endo-β-1,4-glucanase were purified and characterised from the midgut gland of the herbivorous land crab Gecarcoidea natalis and the crayfish Cherax destructor. The laminarinase isolated from G. natalis was estimated to have a molecular mass of 41 kDa by SDS-PAGE and 71 kDa by gel filtration chromatography. A similar discrepancy was noted for C. destructor. Possible reasons for this are discussed. Laminarinase (EC 3.2.1.6) from G. natalis had a Vmax of 42.0 µmol reducing sugars produced min–1 mg protein–1, a Km of 0.126% (w/v) and an optimum pH range of 5.5–7, and hydrolysed mainly β-1,3-glycosidic bonds. In addition to the hydrolysis of β-1,3-glycosidic bonds, laminarinase (EC 3.2.1.39) from C. destructor was capable of significant hydrolysis of β-1,4-glycosidic bonds. It had a Vmax of 19.6 µmol reducing sugars produced min–1 mg protein–1, a Km of 0.059% (w/v) and an optimum pH of 5.5. Laminarinase from both species produced glucose and other short oligomers from the hydrolysis of laminarin. Endo-β-1,4-glucanase (EC 3.2.1.4) from G. natalis had a molecular mass of 52 kDa and an optimum pH of 4–7. It mainly hydrolysed β-1,4-glycosidic bonds, but was also capable of significant hydrolysis of β-1,3-glycosidic bonds. Two endo-β-1,4-glucanases, termed 1 and 2, with respective molecular masses of 53±3 and 52 kDa, were purified from C. destructor. Endo-β-1,4-glucanase 1 was only capable of hydrolysing β-1,4-glycosidic bonds and had an optimum pH of 5.5. Endo-β-1,4-glucanases from both species produced some glucose, cellobiose and other short oligomers from the hydrolysis of carboxymethyl cellulose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impaired glucose uptake is associated with both cardiac hypertrophy and contractile dysfunction, but whether there are common underlying  mechanisms linking these conditions is yet to be determined. Using a ‘gene dose’ Cre-Lox GLUT4-deficient murine model, we examined the effect of suppressed glucose availability on global myocardial gene expression and glycolysis substrate bypass on the function of isolated perfused hearts. Performance of hearts from 22- to 60-week-old male GLUT4 knockout (KO, > 95% reduction in GLUT4), GLUT4 knockdown (KD, 85% reduction in cardiac GLUT4) and C57Bl/6 wild-type (WT) controls was measured ex vivo in Langendorff mode perfusion. DNA microarray was used to profile mRNA expression differences between GLUT4-KO and GLUT4-KD hearts. At 22 weeks, GLUT4-KO hearts exhibited cardiac hypertrophy and impaired contractile function ex vivo, characterized by a 40% decrease in developed pressure. At 60 weeks, dysfunction was accentuated in GLUT4-KO hearts and evident in GLUT4-KD hearts. Exogenous pyruvate (5 mM) restored systolic pressure to a level equivalent to WT (GLUT4-KO, 176.8 ± 13.2 mmHg vs. WT, 146.4 ± 9.56 mmHg) in 22-week-old GLUT4-KO hearts but not in 60-week-old GLUT4-KO hearts. In GLUT4-KO, DNA microarray analysis detected downregulation of a number of genes centrally involved in mitochondrial oxidation and upregulation of other genes indicative of a shift to cytosolic β-oxidation of long chain fatty acids. A direct link between cardiomyocyte GLUT4 deficiency, hypertrophy and contractile dysfunction is demonstrated. These data provide mechanistic insight into the myocardial metabolic adaptations associated with short and long-term insulin resistance and indicate a window of opportunity for substrate intervention and functional ‘rescue’.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

• 1. The present review discusses the potential role of nitric oxide (NO) in the: (i) regulation of skeletal muscle glucose uptake during exercise; and (ii) activation of mitochondrial biogenesis after exercise.
• 2. We have shown in humans that local infusion of an NO synthase inhibitor during exercise attenuates increases in skeletal muscle glucose uptake without affecting blood flow. Recent studies from our laboratory in rodents support these findings in humans, although rodent studies from other laboratories have yielded conflicting results.
• 3. There is clear evidence that NO increases mitochondrial biogenesis in non-contracting cells and that NO influences basal skeletal muscle mitochondrial biogenesis. However, there have been few studies examining the potential role of NO in the activation of mitochondrial biogenesis following an acute bout of exercise or in response to exercise training. Early indications are that NO is not involved in regulating the increase in mitochondrial biogenesis that occurs in response to exercise.
4. Exercise is considered the best prevention and treatment option for diabetes, but unfortunately many people with diabetes do not or cannot exercise regularly. Alternative therapies are therefore critical to effectively manage diabetes. If skeletal muscle NO is found to play an important role in regulating glucose uptake and/or mitochondrial biogenesis, pharmaceutical agents designed to mimic these effects of exercise may improve glycaemic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) has been implicated as an important signaling molecule in the insulin-independent, contraction-mediated glucose uptake pathway and may represent a novel strategy for blood glucose control in patients with type 2 diabetes (T2DM). The current study sought to determine whether the NO donor, sodium nitroprusside (SNP) increases glucose uptake in primary human skeletal muscle cells (HSkMC) derived from both healthy individuals and patients with T2DM. Vastus lateralis muscle cell cultures were derived from seven males with T2DM (aged 54 ± 2 years, BMI 31.7 ± 1.2 kg/m2, fasting plasma glucose 9.52 ± 0.80 mmol/L) and eight healthy individuals (aged 46 ± 2 years, BMI 27.1 ± 1.5 kg/m2, fasting plasma glucose 4.69 ± 0.12 mmol/L). Cultures were treated with both therapeutic (0.2 and 2 μM) and supratherapeutic (3, 10 and 30 mM) concentrations of SNP. An additional NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) was also examined at a concentration of 50 μM. Glucose uptake was significantly increased following both 30 and 60 min incubations with the supratherapeutic SNP treatments (P = 0.03) but not the therapeutic SNP doses (P = 0.60) or SNAP (P = 0.54). There was no difference in the response between the healthy and T2DM cell lines with any treatment or dose. The current study demonstrates that glucose uptake is elevated by supratherapeutic, but not therapeutic doses of SNP in human primary skeletal muscle cells derived from both healthy volunteers and patients with T2D. These data confirm that nitric oxide donors have potential therapeutic utility to increase glucose uptake in humans, but that SNP only achieves this in supratherapeutic doses. Further study to delineate mechanisms and the therapeutic window is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To investigate the effects of globular adiponectin (gAd) on gene expression and whether these effects are mediated through 3',5'-cyclic monophosphate-activated protein kinase in skeletal muscle myotubes obtained from lean, obese and obese diabetic individuals.

Methods: Rectus abdominus muscle biopsies were obtained from surgical patients to establish primary skeletal muscle cell cultures. Three distinct primary cell culture groups were established (lean, obese and obese diabetic; n = 7 in each group). Once differentiated, these cultures were then exposed to gAd or 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 6 h.

Results: Stimulation with gAd decreased pyruvate dehydrogenase kinase 4 (PDK4) gene expression in the obese and diabetic samples (p ≤ 0.05) and increased cytochrome c oxidase (COX) subunit 4 (COXIV) gene expression in the myotubes derived from lean individuals only (p < 0.05). AICAR treatment also decreased PDK4 gene expression in the obese- and diabetic-derived myotubes (p ≤ 0.05) and increased the gene expression of the mitochondrial gene, COXIII, in the lean-derived samples only (p < 0.05).

Conclusions: This study demonstrated distinct disparity between myotubes derived from lean compared with obese and obese diabetic individuals following gAd and AICAR treatment. Further understanding of the regulation of PDK4 in obese and diabetic skeletal muscle and its interaction with adiponectin signalling is required as this appears to be an important early molecular event in these disease states that may improve blood glucose control and metabolic flux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background--Diabetes mellitus increases the risk of cardiovascular disease (CVD) and all-cause mortality. The relationship between milder elevations of blood glucose and mortality is less clear. This study investigated whether impaired fasting glucose and impaired glucose tolerance, as well as diabetes mellitus, increase the risk of all-cause and CVD mortality.

Methods and Results
--In 1999 to 2000, glucose tolerance status was determined in 10 428 participants of the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). After a median follow-up of 5.2 years, 298 deaths occurred (88 CVD deaths). Compared with those with normal glucose tolerance, the adjusted all-cause mortality hazard ratios (HRs) and 95% confidence intervals (CIs) for known diabetes mellitus and newly diagnosed diabetes mellitus were 2.3 (1.6 to 3.2) and 1.3 (0.9 to 2.0), respectively. The risk of death was also increased in those with impaired fasting glucose (HR 1.6, 95% CI 1.0 to 2.4) and impaired glucose tolerance (HR 1.5, 95% CI 1.1 to 2.0). Sixty-five percent of all those who died of CVD had known diabetes mellitus, newly diagnosed diabetes mellitus, impaired fasting glucose, or impaired glucose tolerance at baseline. Known diabetes mellitus (HR 2.6, 95% CI 1.4 to 4.7) and impaired fasting glucose (HR 2.5, 95% CI 1.2 to 5.1) were independent predictors for CVD mortality after adjustment for age, sex, and other traditional CVD risk factors, but impaired glucose tolerance was not (HR 1.2, 95% CI 0.7 to 2.2).

Conclusions--This study emphasizes the strong association between abnormal glucose metabolism and mortality, and it suggests that this condition contributes to a large number of CVD deaths in the general population. CVD prevention may be warranted in people with all categories of abnormal glucose metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE--We examined the associations of physical activity with fasting plasma glucose (FPG) and with 2-h postload plasma glucose (2-h PG) in men and women with low, moderate, and high waist circumference.

RESEARCH DESIGN AND METHODS--The Australian Diabetes, Obesity and Lifestyle (AusDiab) study provided data on a population-based cross-sectional sample of 4,108 men and 5,106 women aged [greater than or equal to] 25 years without known diabetes or health conditions that could affect physical activity. FPG and 2-h PG were obtained from an oral glucose tolerance test. Self-reported physical activity level was defined according to the current public health guidelines as active ([greater than or equal to] 150 min/week across five or more sessions) or inactive (<150 min/week and/or less than five sessions). Sex-specific quintiles of physical activity time were used to ascertain dose response.

RESULTS--Being physically active and total physical activity time were independently and negatively associated with 2-h PG. When physical activity level was considered within each waist circumference category, 2-h PG was significantly lower in active high-waist circumference women ([beta] -0.30 [95% CI -0.59 to -0.01], P = 0.044) and active low-waist circumference men ([beta] -0.25 [-0.49 to -0.02], P = 0.036) compared with their inactive counterparts. Considered across physical activity and waist circumference categories, 2-h PG levels were not significantly different between active moderate-waist circumference participants and active low-waist circumference participants. Associations between physical activity and FPG were nonsignificant.

CONCLUSIONS--There are important differences between 2-h PG and FPG related to physical activity. It appears that 2-h PG is more sensitive to the beneficial effects of physical activity, and these benefits occur across the waist circumference spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE--We examined the associations of objectively measured sedentary time and physical activity with continuous indexes of metabolic risk in Australian adults without known diabetes.

RESEARCH DESIGN AND METHODS--An accelerometer was used to derive the percentage of monitoring time spent sedentary and in light-intensity and moderate-to-vigorous-intensity activity, as well as mean activity intensity, in 169 Australian Diabetes, Obesity and Lifestyle Study (AusDiab) participants (mean age 53.4 years). Associations with waist circumference, triglycerides, HDL cholesterol, resting blood pressure, fasting plasma glucose, and a clustered metabolic risk score were examined.

RESULTS--Independent of time spent in moderate-to-vigorous-intensity activity, there were significant associations of sedentary time, light-intensity time, and mean activity intensity with waist circumference and clustered metabolic risk. Independent of waist circumference, moderate-to-vigorous-intensity activity time was significantly beneficially associated with triglycerides.

CONCLUSIONS--These findings highlight the importance of decreasing sedentary time, as well as increasing time spent in physical activity, for metabolic health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE--To assess the Australian protocol for identifying undiagnosed type 2 diabetes and impaired glucose metabolism.

RESEARCH DESIGN AND METHODS--The Australian screening protocol recommends a stepped approach to detecting undiagnosed type 2 diabetes based on assessment of risk status, measurement of fasting plasma glucose (FPG) in individuals at risk, and further testing according to FPG. The performance of and variations to this protocol were assessed in a population-based sample of 10,508 Australians.

RESULTS--The protocol had a sensitivity of 79.9%, specificity of 79.9%, and a positive predictive value (PPV) of 13.7% for detecting undiagnosed type 2 diabetes and sensitivity of 51.9% and specificity of 86.7% for detecting impaired glucose tolerance (IGT) or impaired fasting glucose (IFG). To achieve these diagnostic rates, 20.7% of the Australian adult population would require an oral glucose tolerance test (OGTT). Increasing the FPG cut point to 6.1 mmol/l (110 mg/dl) or using Hb[A.sub.1c], instead of FPG to determine the need for an OGTT in people with risk factors reduced sensitivity, increased specificity and PPV, and reduced the proportion requiring an OGTT. However, each of these protocol variations substantially reduced the detection of IGT or IFG.

CONCLUSIONS--The Australian screening protocol identified one new case of diabetes for every 32 people screened, with 4 of 10 people screened requiring FPG measurement and 1 in 5 requiring an OGTT. In addition, 1 in 11 people screened had IGT or IFG. Including Hb[A.sub.1c] measurement substantially reduced both the number requiring an OGTT and the detection of IGT or IFG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To examine gender differences in the characteristics and prevalence of various categories of glucose tolerance in a population study in Mauritius.

Research design and methods: In 1998, a community-based cross-sectional survey was conducted in Mauritius. Categories of glucose metabolism were determined in 5388 adults, with an oral glucose tolerance test given to those who did not have previously diagnosed diabetes (n = 4036). Other cardiovascular risk factors were assessed among those without known diabetes.

Results
: For men and women the prevalence of diabetes (22.0 vs. 21.8%, respectively) and the prevalence of coexisting impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) (3.2 vs. 2.9%) were similar. However, men were twice as likely as women to have isolated IFG [5.1% (4.2–6.0) vs. 2.9% (2.3–3.5)], despite being younger, thinner and with lower plasma insulin but higher lipids. Conversely, the prevalence of isolated IGT was lower in men [9.0% (7.9–10.2) vs. 13.9% (12.6–15.1)]. Among non-diabetic individuals, fasting glucose was higher in men than women, whereas 2-h glucose was higher in women. In people without diabetes, women had significantly higher body mass index, beta cell function (HOMA-B), fasting and 2-h insulin than men and significantly lower waist-hip ratios, waist circumference, insulin sensitivity (HOMA-S) and triglycerides.

Conclusion: In Mauritius, the distribution of impaired glucose metabolism differs by sex. The observation that IFG is more prevalent in men and IGT more prevalent in women raises important questions about their underlying aetiology and the ability of the current glucose thresholds to equally identify men and women at high-risk of developing diabetes. IFG should be seen as a complimentary category of abnormal glucose tolerance, rather than a replacement for IGT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of how tea and epigallocatechin-3-gallate (EGCG) lower body fat are not completely understood. This study investigated long-term administration of green tea (GT), black tea (BT), or isolated EGCG (1 mg/kg per day) on body composition, glucose tolerance, and gene expression related to energy metabolism and lipid homeostasis; it was hypothesized that all treatments would improve the indicators of metabolic syndrome. Rats were fed a 15% fat diet for 6 months from 4 weeks of age and were supplied GT, BT, EGCG, or water. GT and BT reduced body fat, whereas GT and EGCG increased lean mass. At 16 weeks GT, BT, and EGCG improved glucose tolerance. In the liver, GT and BT increased the expression of genes involved in fatty acid synthesis (SREBP-1c, FAS, MCD, ACC) and oxidation (PPAR-α, CPT-1, ACO); however, EGCG had no effect. In perirenal fat, genes that mediate adipocyte differentiation were suppressed by GT (Pref-1, C/EBP-β, and PPAR-γ) and BT (C/EBP-β), while decreasing LPL, HSL, and UCP-2 expression; EGCG increased expression of UCP-2 and PPAR-γ genes. Liver triacylglycerol content was unchanged. The results suggest that GT and BT suppressed adipocyte differentiation and fatty acid uptake into adipose tissue, while increasing fat synthesis and oxidation by the liver, without inducing hepatic fat accumulation. In contrast, EGCG increased markers of thermogenesis and differentiation in adipose tissue, while having no effect on liver or muscle tissues at this dose. These results show novel and separate mechanisms by which tea and EGCG may improve glucose tolerance and support a role for these compounds in obesity prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective
To determine the accuracy and appropriateness of capillary blood glucose testing in population surveys.
Materials and methods

Capillary blood glucose using the Rochec ACCU-CHEK instrument and Advantage 11 Test Strips was compared to a laboratory instrument. Three independent cross-sectional risk factor surveys (n=1432) and baseline individuals from the Greater Green Triangle Diabetes Prevention Project (n=341) provided both fasting plasma and capillary blood glucose measurements. Accuracy of capillary glucoses was assessed using the ISO 15197 standard. The median age of the participants was 71years, ranging from 25 to 84years. There were 799 males and 974 females.
Results
Capillary glucose method had poorer precision at lower concentrations (CV: 9.50%, mean=3.09mmol/L, CV: 4.90%, mean=16.78mmol/L, n=233 replicates). Individual discrepancies were seen across the measuring range (2.8–19.9mmol/L, n=1773). In total, 94.5% of results fell within the minimum acceptable accuracy standards. This was slightly short of the 95% of results required to meet the ISO 15197 standard. The prevalence of diabetes in the study population using glucose 7.0mmol/L was 2.4% (95%CI 1.8–3.3%) according to fasting plasma glucose and 2.8% (2.1–3.8%) according to fasting capillary glucose. The lower WHO-defined cut-off of 6.1mmol/L for capillary blood glucose testing gave a prevalence of 10.7% (9.0–12.5%).
Conclusions
This study of matched capillary and plasma glucose results concludes that while it is appropriate to use fasting capillary glucose levels to determine the prevalence of diabetes in populations, it should not be used to reliably diagnose diabetes in individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis: The 5′-AMP-activated protein kinase (AMPK) pathway is intact in type 2 diabetic patients and is seen as a target for diabetes treatment. In this study, we aimed to assess the impact of the AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR) on both glucose and fatty acid metabolism in vivo in type 2 diabetic patients.

Methods: Stable isotope methodology and blood and muscle biopsy sampling were applied to assess blood glucose and fatty acid kinetics following continuous i.v. infusion of AICAR (0.75 mg kg−1 min−1) and/or NaCl (0.9%) in ten male type 2 diabetic patients (age 64 ± 2 years; BMI 28 ± 1 kg/m2).
Results Plasma glucose rate of appearance (R a) was reduced following AICAR administration, while plasma glucose rate of disappearance (R d) was similar in the AICAR and control test. Consequently, blood glucose disposal (R d expressed as a percentage of R a) was increased following AICAR infusion (p < 0.001). Accordingly, a greater decline in plasma glucose concentration was observed following AICAR infusion (p < 0.001). Plasma NEFA R a and R d were both significantly reduced in response to AICAR infusion, and were accompanied by a significant decline in plasma NEFA concentration. Although AMPK phosphorylation in skeletal muscle was not increased, we observed a significant increase in acetyl-CoA carboxylase phosphorylation (p < 0.001).

Conclusions/interpretation
: The i.v. administration of AICAR reduces hepatic glucose output, thereby lowering blood glucose concentrations in vivo in type 2 diabetic patients. Furthermore, AICAR administration stimulates hepatic fatty acid oxidation and/or inhibits whole body lipolysis, thereby reducing plasma NEFA concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty two, young, healthy individuals participated in three studies aiming to assess the effect of various types of physical activity - acute exercise of moderate intensity and duration, varying intensity, short-term training - on skeletal muscle GLUT-4 gene and protein expression as well as on a range of genes encoding the proteins involved in carbohydrate metabolism in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The role of adrenaline in regulating hepatic glucose production and muscle glucose uptake during exercise was examined in six adrenaline deficient, bilaterally adrenalectomised humans. Six sex and age matched healthy individuals served as controls (CON).

2. Adrenalectomised subjects cycled for 45 min at 68 ± 1% maximum pulmonary Oμ uptake (VOμ,max), followed by 15 min at 84 ± 2% VOμ,max without (−ADR) or with (+ADR) adrenaline infusion, which elevated plasma adrenaline levels (45 min, 4·49 ± 0·69 nmol l¢; 60 min, 12·41 ± 1·80 nmol l¢; means ± s.e.m.). Glucose kinetics were measured using [3_ÅH]glucose.

3. Euglycaemia was maintained during exercise in CON and −ADR, whilst in +ADR plasma glucose was elevated. The exercise induced increase in hepatic glucose production was similar in +ADR and −ADR; however, adrenaline infusion augmented the rise in hepatic glucose production early in exercise. Glucose uptake increased during exercise in +ADR and −ADR, but was lower and metabolic clearance rate was reduced in +ADR.

4. During exercise noradrenaline and glucagon concentrations increased, and insulin and cortisol concentrations decreased, but plasma levels were similar between trials. Adrenaline infusion suppressed growth hormone and elevated plasma free fatty acids, glycerol and lactate. Alanine and â_hydroxybutyrate levels were similar between trials.

5. The results demonstrate that glucose homeostasis was maintained during exercise in adrenalectomised subjects. Adrenaline does not appear to play a major role in matching hepatic glucose production to the increase in glucose clearance. In contrast, adrenaline infusion results in a mismatch by simultaneously enhancing hepatic glucose production and inhibiting glucose clearance.