53 resultados para Formation process


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurodegeneration accompanies the process of natural aging, reducing the ability to perform functional daily activities. Transcranial direct current stimulation (tDCS) alters neuronal excitability and motor performance; however its beneficial effect on the induction of primary motor cortex (M1) plasticity in older adults is unclear. Moreover, little is known as to whether the tDCS electrode arrangement differentially affects M1 plasticity and motor performance in this population. In a double-blinded, cross-over trial, we compared unilateral, bilateral and sham tDCS combined with visuomotor tracking, on M1 plasticity and motor performance of the non-dominant upper limb, immediately post and 30 min following stimulation. We found (a) unilateral and bilateral tDCS decreased tracking error by 12–22% at both time points; with sham decreasing tracking error by 10% at 30 min only, (b) at both time points, motor evoked potentials (MEPs) were facilitated (38–54%) and short-interval intracortical inhibition was released (21–36%) for unilateral and bilateral conditions relative to sham, (c) there were no differences between unilateral and bilateral conditions for any measure. These findings suggest that tDCS modulated elements of M1 plasticity, which improved motor performance irrespective of the electrode arrangement. The results provide preliminary evidence indicating that tDCS is a safe non-invasive tool to preserve or improve neurological function and motor control in older adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a summary of the study that examined the relationship between school design and adolescent identity formation. Reviewing theories and empirical studies of identity development, three major processes involved in adolescent identity formation were identified: (1) separation or individuation process, (2) social integration or relational connectedness, and (3) developmental exploration. Two key characteristics of schools that support these identity formation processes were proposed: (1) having a supportive environment addressing needs for individuation and social integration, and (2) providing opportunities for developmental exploration. Implications of these characteristics for school design were studied through a review of research and practices of learning space design. Four secondary schools in Australia which represented an innovative approach to learning space design were then examined to provide insights into these design-related implications and better understand issues and challenges associated with them. The paper concludes with proposing five design principles which supports adolescent identity development through contributing to processes involved in identity formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel solution spinning method to produce highly conducting carbon nanotube (CNT) biofibers is reported. In this process, carbon nanotubes are dispersed using biomolecules such as hyaluronic acid, chitosan, and DNA, and these dispersions are used as spinning solutions. Unlike previous reports in which a polymer binder is used in the coagulation bath, these dispersions can be converted into fibers simply by altering the nature of the coagulation bath via pH control, use of a crosslinking agent, or use of a biomolecule-precipitating solvent system. With strength comparable to most reported CNT fibers to date, these CNT biofibers demonstrate superior electrical conductivities. Cell culture experiments are performed to investigate the cytotoxicity of these fibers. This novel fiber spinning approach could simplify methodologies for creating electrically conducting and biocompatible platforms for a variety of biomedical applications, particularly in those systems where the application of an electrical field is advantageous?for example, in directed nerve and/or muscle repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of regular additions of a surfactant (ethylene bis-stearamide; EBS) at different time intervals was investigated on the powder characteristics of a biomedical Ti-10Nb-3Mo alloy (wt.%). Ball milling was performed for 10 h on the elemental powders in four series of experiments at two rotation speeds (200 and 300 rpm). The addition of 2 wt.% total EBS at different time intervals during ball milling resulted in noticeable changes in particle size and morphology of the powders. The surfactant addition at shorter time intervals led to the formation of finer particles, a more homogenous powder distribution, a higher powder yield, and a lower contamination content in the final materials. Thermal analysis of the powders after ball milling suggested that differing decomposition rates of the surfactant were responsible for the measured powder particle changes and contamination contents. The results also indicated that the addition of surfactant during ball milling at 200 rpm caused a delay in the alloy formation, whereas ball milling at 300 rpm favored the formation of the titanium alloy.Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drying and denaturation kinetics of aqueous droplets of α-lactalbumin (α-lac), β-lactoglobulin (β-lg), and bovine serum albumin (BSA) were measured in a convective drying environment. Single droplets having an initial droplet diameter of 2 ± 0.1 mm and containing 10% (w/v) protein concentration were dried using conditioned air (65 and 80 °C, 2-3% RH, 0.5 m/s velocity) for 600 s. The denaturation of these proteins was measured by using reversed-phase HPLC. At the end of 600 s of drying 13.3 and 19.4% α-lac was found to be lost due to denaturation at 65 and 80 °C, respectively. Up to 31.0% of β-lg was found to be denatured, whereas BSA was not found to be significantly (p > 0.05) denatured in these drying conditions. The formation and strength of skin and the associated morphological features were found to be linked with the degree of denaturation of these proteins. The secondary structure of these proteins was significantly (p < 0.05) affected and altered by the drying stresses. The β-sheet and random coil contents were increased in α-lac by 6.5 and 4.0%, respectively, whereas the α-helix and β-turn contents decreased by 5.5 and 5.0%, respectively. The β-sheet and random coil contents in β-lg were increased by 7.5 and 2.0%, respectively, whereas the α-helix and β-turn contents decreased by 3.5 and 6.0%, respectively. In the case of BSA the β-sheet, α-helix, and random coil contents were found to increase, whereas the β-turn content decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulation was employed to study the atomic interactions in titanium carbides and iron matrix containing carbon and titanium, which are significant for understanding the formation of titanium carbide cluster during precipitate process. The atoms trajectory and diffusion coefficients of carbon in titanium carbide were analyzed to provide a vacancy-exchanging mechanism and clarify the carbon concentration dependence of carbon diffusion in titanium carbide. The dependence of the formation of titanium carbide cluster in iron matrix on carbon was determined from the study of atoms diffusivity, cluster formation and formation energy of titanium carbide cluster. The simulation results provided insight into the carbon diffusion process and improved the understanding of the formation of titanium carbide cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterization of the anticancer active compound trans-[PtII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)] is described along with identification of electrochemical conditions that favor formation of a monomeric one-electron-oxidized PtIII derivative. The square-planar organoamidoplatinum(II) compound was synthesized through a carbon dioxide elimination reaction. Structural characterization by using single-crystal X-Ray diffraction reveals a trans configuration with respect to donor atoms of like charges. As PtIII intermediates have been implicated in the reactions of platinum anticancer agents, electrochemical conditions favoring the formation of one-electron-oxidized species were sought. Transient cyclic voltammetry at fast scan rates or steady-state rotating disc and microelectrode techniques in a range of molecular solvents and an ionic liquid confirm the existence of a well-defined, chemically and electrochemically reversible one-electron oxidation process that, under suitable conditions, generates a PtIII complex, which is proposed to be monomeric [PtIII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)]+. Electron paramagnetic resonance spectra obtained from highly non-coordinating dichloromethane/([Bu4N][B(C6F5)4]) solutions, frozen to liquid nitrogen temperature immediately after bulk electrolysis in a glove box, support the PtIII assignment rather than formation of a PtII cation radical. However, the voltammetric behavior is highly dependent on the timescale of the experiments, temperature, concentration of trans-[PtII{(p-BrC6F4)NCH2CH2NEt2}- Cl(py)], and the solvent/electrolyte. In the low-polarity solvent CH2Cl2 containing the very weakly coordinating electrolyte [Bu4N][B(C6F5)4], a well-defined reversible one-electron oxidation process is observed on relatively long timescales, which is consistent with the stabilization of the cationic platinum(III) complex in non-coordinating media. Bulk electrolysis of low concentrations of [Pt{(p-BrC6F4)NCH2CH2NEt2}Cl(py)] favors the formation of monomeric [PtIII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)]+. Simulations allow the reversible potential of the PtII/PtIII process and the diffusion coefficient of [PtIII{(p-BrC6F4)- NCH2CH2NEt2}Cl(py)]+ to be calculated. Reversible electrochemical behavior, giving rise to monomeric platinum(III) derivatives, is rare in the field of platinum chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the chip formation mechanism and machinability of two-phase materials, such as, wrought duplex stainless steel alloys SAF 2205 and SAF 2507. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Microhardness profiles reveal correlation in hardness from the workpiece material transitioning to the chip. The tool wear (TiAIN + TiN coated solid carbide twist drill) and machining forces were investigated. Tool wear, was dominantly due to the adhesion process which developed from built-up edge formation, is highly detrimental to the flank face. Flute damage was also observed as a major issue in the drilling of duplex alloys leading to premature tool failure. Duplex 2507 shows higher sensitivity to cutting speed during machining and strain hardening at higher velocity and less machinability due to presence of higher percentage of Ni, Mo and Cr.