97 resultados para Forest remnant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Throughout the world, the increasing use of land for agriculture has been associated with extensive loss and fragmentation of natural habitats and, frequently, the degradation of remaining habitats. The effects of such habitat changes have been well studied for some faunal groups, but little is known of their consequences for bats. The aim of this study was to investigate the ecology and conservation of an assemblage of insectivorous bats in a rural landscape, with particular focus on their foraging and roosting requirements. This increased knowledge will, hopefully, assist the formulation of policy and management decisions to ensure the long-term survival of bats in these altered environments. The distribution and abundance of insectivorous bats in the Northern Plains of Victoria was investigated to determine the impacts of land-use change and to identify factors influencing the distribution of bats in rural landscapes. Thirteen species of insectivorous bats were recorded across the region by sampling at 184 sites. Two species were rare, but the remaining 11 species were widespread and occurred in all types of remnant wooded vegetation, ranging from large blocks (≥200 ha) to small isolated remnants (≤5 ha) and scattered trees in cleared farm paddocks. There was no significant difference between remnant types in the relative abundance of bat species, in species richness, or in the composition of bat assemblages at study sites. In a subsequent study, no difference in the activity levels of bats was found between remnants with different tree densities, ranging from densely-vegetated blocks to single paddock trees. However, sites in open paddocks devoid of trees differed significantly from all types of wooded remnants and had significantly lower levels of bat activity and a different species composition. In highly cleared and modified landscapes, all native vegetation has value to bats, even the smallest remnant, roadside and single paddock tree. Roost sites are a key habitat requirement for bats and may be a limiting resource in highly modified environments. Two species, the lesser long-eared bat Nyctophilus geoffroyi and Gould's wattled bat Chalinolobus gouldii, were investigated as a basis for understanding the capacity of bats to survive in agricultural landscapes. These species have different wing morphologies, which may be influential in how they use the landscape, and anecdotal evidence suggested differences in their roosting ecology. Roosting ecology was examined using radio-tracking to locate 376 roosts in two study areas with contrasting tree cover in northern Victoria. Both species were highly selective in the location of their roosts in the landscape, in roost-site selection and in roosting behaviour, and responded differently to differing levels of availability of roosts. The Barmah-Picola study area incorporated remnant vegetation in farmland and an adjacent extensive floodplain forest (Barmah forest). Male N. geojfroyi roosted predominantly within 3 km of their foraging areas in remnants in farmland. However, most female N. geoffroyi, and both sexes of C. gouldii, roosted in Barmah forest up to 12 km from their foraging areas in farmland remnants. These distances were greater than previously recorded for these species and further than predicted by wing morphology. In contrast, in the second study area (Naring) where only small remnants of wooded vegetation remain in farmland, individuals of both species moved significantly shorter distances between roost sites and foraging areas. There were marked inter- and intra-specific differences in the roosts selected. C. gouldii used similar types of roosts in both areas - predominantly dead spouts in large, live trees. N. geoffroyi used a broader range of roost types, especially in the farmland environment. Roosts were typically under bark and in fissures, with males in particular also using anthropogenic structures. A strong preference was shown by both sexes for roosts in dead trees, and entrance dimensions of roosts were consistently narrow (2.5 cm). In Barmah forest, maternity roosts used by N. geoffroyi were predominantly in narrow fissures in large-diameter, dead trees, while at Naring maternity roosts were also found under bark, in buildings, and in small-diameter, live and dead trees. The number of roost trees that are required for an individual or colony is influenced by the frequency with which bats move between roosts, the proportion of roosts that are re-used, the distance between consecutive roosts, and the size of roosting colonies. Both species roosted in small colonies and regularly shifted roost sites within a discrete roost area. These behavioural traits suggest that a high density of roost sites is required. There were marked differences in these aspects of behaviour between individuals roosting in Barmah forest and in the fragmented rural landscape. At Naring, N. geqffroyi remained in roosts for longer periods and moved greater distances between consecutive roosts than in Barmah forest. In contrast, C. gouldii used a smaller pool of roosts in the farmland environment by re-using roosts more frequently. Within Barmah forest, there is an extensive area of forest but the density of hollow-bearing trees is reduced due to timber harvesting and silvicultural practices. Individuals were selective in the location of their roosting areas, with both species selecting parts of the forest that contained higher densities of their preferred roost trees than was generally available in the forest. In contrast, in farmland at Naring, where there were small pockets of remnant vegetation with high densities of potential roost sites surrounded by cleared paddocks with few roosting opportunities, little selection was shown. This suggests that in Barmah forest the density of trees with potential roosts is lower than optimal, while in farmland roosting resources may be adequate in woodland remnants, but limiting at the landscape scale since more than 95% of the landscape now provides no roosting opportunities. Insectivorous bats appear to be less severely affected than some other faunal groups by habitat fragmentation and land-use change. A highly developed capacity for flight, the spatial scale at which they move and their ability to cross open areas means that they can regularly move among multiple landscape elements, rather than depend on single remnants for all their resources. In addition, bats forage and roost mainly at elevated levels in trees and so are less sensitive to degradation of wooded habitats at ground level. Although seemingly resilient to habitat fragmentation, insectivorous bats are fundamentally dependent on trees for roosting and foraging, and so are vulnerable to habitat loss and ongoing rural tree decline. Protection of the remaining large old trees and measures to ensure regeneration to provide ongoing replacement of hollow-bearing trees through time are critical to ensure the long-term conservation of bats in rural landscapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riparian zones are a characteristic component of many landscapes throughout the world and increasingly are valued as key areas for biodiversity conservation. Their importance for bird communities has been well recognised in semi-arid environments and in modified landscapes where there is a marked contrast between riparian and adjacent non-riparian vegetation. The value of riparian zones in largely intact landscapes with continuous vegetation cover is less well understood. This research examined the importance of riparian habitats for avifauna conservation by investigating the ecological interactions contributing to the pattern of bird assemblages in riparian and adjacent non-riparian habitats. Specifically, the focus is on the bird assemblages of riparian zones and those of adjacent non-riparian vegetation types and the influence that associated differences in resource availabilities, habitat structure and conditions have on observed patterns. This study was conducted in the foothill forests of the Victorian Highlands, south-east Australia. Mixed-species eucalypt (genus Eucalyptus) forests dominate the vegetation of this region. Site selection was based on the occurrence of suitable riparian habitat interspersed within extensive, relatively undisturbed (i.e. no recent timber harvesting or fire events) forest mosaics. A series of 30 paired riparian and non-riparian sites were established among six stream systems in three forest areas (Bunyip State Park, Kinglake National Park and Marysville State Forest). Riparian sites were positioned alongside the stream and the non-riparian partner site was positioned on a facing slope at a distance of approximately 750 m. Bird surveys were carried out during 29 visits to each site between July 2001 and December 2002. Riparian sites were floristically distinct from non-riparian sites and had a more complex vegetation structure, including a mid-storey tree layer mostly absent from non-riparian sites, extensive fine litter and coarse woody debris, and dense ground-layer vegetation (e.g. sedges and ground ferns). The characteristic features of non-riparian habitats included a relatively dense canopy cover, a ground layer dominated by grasses and fine litter, and a high density of canopy-forming trees in the smaller size-classes. Riparian zones supported a significantly greater species richness, abundance and diversity of birds when compared to non-riparian habitats. The composition of bird assemblages differed significantly between riparian and non-riparian habitats, with riparian assemblages displaying a higher level of similarity among sites. The strongest contributors to observed dissimilarities between habitat types included species that occurred exclusively in either habitat type or species with large contrasts in abundance between habitat types. Much of the avifauna (36%) of the study area is composed of species that are common and widespread in south-east Australia (i.e. forest generalists). Riparian habitats were characterised by a suite of species more typical of wetter forest types in south-east Australia and many of these species had a restricted distribution in the forest mosaic. Some species (7%) occurred exclusively in riparian habitats (i.e. riparian selective species) while others (43%) were strongly linked to these habitats (i.e. riparian associated species). A smaller proportion of species occurred exclusively (2%) in non-riparian habitats (i.e. non-riparian selective species) or were strongly linked to these habitats (10%; i.e. non-riparian associated species). To examine the seasonal dynamics of assemblages, the variation through time in species richness, abundance and composition was compared between riparian and non-riparian sites. Riparian assemblages supported greater richness and abundance, and displayed less variation in these parameters, than non-riparian assemblages at all times. The species composition of riparian assemblages was distinct from non-riparian assemblages throughout the annual cycle. An influx of seasonal migrants elevated species richness and abundance in the forest landscape during spring and summer. The large-scale movement pattern (e.g. coastal migrant, inland migrant) adopted by migrating species was associated with their preference for riparian or non-riparian habitats in the landscape. Species which migrate north-south along the east coast of mainland Australia (i.e. coastal migrants) used riparian zones disproportionately; eight of eleven species were riparian associated species. Species which migrate north-south through inland Australia (i.e. inland migrants) were mostly associated with non-riparian habitats. The significant differences in the dynamics of community structure between riparian and non-riparian assemblages shows that there is a disproportionate use of riparian zones across the landscape and that they provide higher quality habitat for birds throughout the annual cycle. To examine the ecological mechanisms by which riparian assemblages are richer and support more individual birds, the number of ecological groups (foraging, nest-type and body mass groups) represented, and the species richness of these groups, was compared between riparian and non-riparian assemblages. The structurally complex vegetation and distinctive habitat features (e.g. aquatic environments, damp sheltered litter) provided in the riparian zone, resulted in the consistent addition of ecological groups to riparian assemblages (e.g. sheltered ground – invertebrates foraging group) compared with non-riparian assemblages. Greater species richness was accommodated in most foraging, nest-type and body mass groups in riparian than non-riparian assemblages. Riparian zones facilitated greater richness within ecological groups by providing conditions (i.e. more types of resources and greater abundance of resources) that promoted ecological segregation between ecologically similar species. For a set of commonly observed species, significant differences in their use of structural features, substrates and heights were registered between riparian and non-riparian habitats. The availability and dynamics of resources in riparian and non-riparian habitats were examined to determine if there is differential availability of particular resources, or in their temporal availability, throughout the annual cycle. Riparian zones supported more abundant and temporally reliable eucalypt flowering (i.e. nectar) than non-riparian habitats throughout the annual cycle. Riparian zones also supported an extensive loose bark resource (an important microhabitat for invertebrates) including more peeling bark and hanging bark throughout the year than at non-riparian sites. The productivity of eucalypts differed between habitat types, being higher in riparian zones at most times for all eucalypts combined, and for some species (e.g. Narrow-leaved Peppermint Eucalyptus radiata). Non-riparian habitats provided an abundant nectar resource (i.e. shrub flowering) at particular periods in the annual cycle. Birds showed clear relationships with the availability of specific food (i.e. nectar) and foraging resources (i.e. loose bark). The demonstration of a greater abundance of resources and higher primary productivity in riparian zones is consistent with the hypothesis that these linear strips that occupy only a small proportion of the landscape have a disproportionately high value for birds. Riparian zones in continuous eucalypt forest provide high quality habitats that contribute to the diversity of habitats and resources available to birds in the forest mosaic, with positive benefits for the landscape-level species pool. Despite riparian and non-riparian habitat supporting distinct assemblages of birds, strong linkages are maintained along the riparian-upslope gradient. Clearly, the maintenance of diverse and sustainable assemblages of birds in forest landscapes depends on complementary management of both riparian and non-riparian vegetation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytophthora cinnamomi (Cinnamon fungus) is a pathogenic soil fungus which infects plant communities along the south-eastern coast of Australia, and the south-western corner of Western Australia. The symptoms of this disease include chlorosis, death of branches (ie. ‘dieback’), retarded growth and the eventual death of infected plants. This leads to devastating effects upon plant communities by altering both the structural and floristic characteristics of these communities. Small mammal species are dependent on specific features of their habitat such as vegetation structure and floristics. This thesis investigated alterations to the habitat of the insectivorous marsupial mouse, Antechinus stuartii, due to the presence of P. cinnamomi. The study was undertaken in an area of an open forest in the Brisbane Ranges, Victoria. Significant changes were found in both the floristic composition and structure of the vegetation at study sites infected with P, cinnamomi, compared to uninfected sites. The habitat utilization by A. stuartii of uninfected and infected vegetation was investigated using live trapping and radio-telemetric techniques. Capture rates were higher at sites uninfected by P. cinnamomi, and both male and females selected areas free from infection. Home range areas of males were significantly larger than those of females as assessed by telemetry. Both sexes spent a high proportion of time in areas dominated by Xanthorrhoea australis (Austral grass tree). There were significant relationships between the abundance of A. stuartii and the denseness of vegetation above 1 metre in height, and in particular, the proportion of cover afforded by X. australis. There were no significant differences in the cover of Eucalyptus spp. between uninfected and infected sites, but there were significantly more nest hollows in infected areas. The abundance of invertebrates was examined using pitfall traps. There were no significant differences in the abundance of the larger invertebrate taxa at infected and uninfected sites, but higher abundances of some micro-invertebrate groups in infected areas were recorded. The most likely factors considered to be influential in the habitat selection of A. stuartii were vegetation structure, and the presence of X. australis. To assess whether these factors were important the leaves of X. australis were removed with a brushcutter, to mimic the early effects of infection with P. cinnamomi. Animals did not respond to the alteration of vegetation structure in the short term (3-4 days). Longer-term experiments are required to assess the habitat utilization of A. stuartii at different periods following habitat manipulation. The implications of the presence of P. cinnamomi on the conservation of fauna are discussed. The destructive nature of the pathogen, and the slow rate of recovery from the disease, means that P. cinnamomi can be considered a threatening process to plant communities and the fauna that reside within that habitat. Future management of this disease within natural areas must therefore be cognisant of the potential of P. cinnamomi to significantly affect faunal as well as vegetative communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studies the interactions and relationships that exist between Eastern Grey Kangaroos and Black Wallabies in their utilisation of spatial and trophic resources in a managed remnant woodland community. The thesis provides a closer understanding of the way in which these species impact upon their habitats. The Coranderrk Reserve, near Healesville in eastern Victoria, Australia was the study site. A floristic analysis of the communities of the study site was conducted. This consisted of plant biomass measurements, estimates of plant abundance and cover determination. Faecal pellets from Eastern Grey Kangaroos and Black Wallabies were collected from ten vegetation communities during three different plant productivity periods. The spatial and temporal distribution of the animals was identified by analysing the frequency of occurrence of faecal pellets in the various communities. The use of faecal pellet density as a measure of habitat utilisation was examined. Eastern Grey Kangaroos utilised communities which were characterised by the presence of a dense grassy statum. Black Wallabies were able to utilise all of the communities of the study site regardless of their floristic composition. A reference herbarium of the leaf epidermis of 233 possible forage plant species was accumulated. These epidermal specimens were prepared for Confocal Scanning Laser Microscopy. The information gained was enhanced and stored digitally. Diagnostic information critical for the identification of plant epidermal fragments was assembled into a computer database. This was used to assist in the recognition of unknown epidermal fragments in macropodid faeces. These epidermal plant recognition techniques enabled a list of the contents of Eastern Grey Kangaroo and Black Wallaby faeces during the sampling periods in the individual communities, to be accumulated. Eastern Grey Kangaroos utilised forage which consisted largely of grass and their diets were similar regardless of their feeding sites or the time of the year. Black Wallaby diets were heterogenous with wide variations over space and time observed. The implications of these findings for current wildlife management practices were considered. Black Wallaby and Eastern Grey Kangaroo herbivory have significant impacts on ecosystem integrity. Management strategies should seek to establish ecologically sustainable populations of both species in remnant woodlands where conservation values are important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitat loss and fragmentation are recognized as primary drivers of biodiversity loss worldwide. To understand the functional effects of habitat fragmentation on bird populations, data on movement across gaps in habitat cover are necessary, although rarely available. In this study, we used call playback to simulate a conspecific territorial intruder to entice birds to move through the landscape in a predictable and directional manner. We then quantified the probability of movement in continuous forest and across cleared gaps for two forest-dependent species, the grey shrike-thrush (Colluricincla harmonica) and the white-throated treecreeper (Cormobates leucophaeus). Fifty-four playback trials were conducted for each species across distances ranging from 25 to 480 m in continuous forest and 15-260 m across gaps in a forest-agricultural landscape in southern Victoria, Australia. The probability of movement was significantly reduced by gaps in forest cover for both species. Shrike-thrushes were six times more likely to move 170 m in continuous forest than to cross 170-m gaps. The mean probability that treecreepers would cross any gap at all was less than 0.5, and they were three times less likely to move 50 m across a gap than through continuous forest. Both species displayed non-linear responses to increasing gap distance: we identified a gap-tolerance threshold of 85 m for the shrike-thrush and 65 m for the treecreeper beyond which individuals were most unlikely to cross. The presence of scattered paddock trees increased functional connectivity for the shrike-thrush, with individuals crossing up to 260 m when scattered trees were present. We conclude that gaps in habitat cover are barriers to movement, and that characteristics of the intervening matrix influence landscape permeability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The indigenous community of San Juan Nuevo Parangaricutiro in Mexico has been engaged in a successful Community Forest Enterprise employing sustainable management practices since 1981. These environmental practices do not seem to be reflected in the educational programmes developed at school. In this study, the environmental knowledge and interest of 102 students at high-school (15 to 18 years old) towards forestry management were analysed. The association between their knowledge and interests in environmental issues was also estimated. These analyses examine their interest in forest management as potential employment and the effect of the educational system on environmental learning. A combination of quantitative and qualitative methods was used. Results showed that environmental concepts were poorly understood despite their inclusion in the curriculum. Adolescents did not envisage working in the forest in the future because they showed no interest in forest activities. Educational implications and strategies to encourage adolescents to become involved in community forest management are crucial for conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable forest management has emerged as a major international forestry issue. This research assessed the potential contribution of certification and labelling to sustainable forest management in Victoria. The results indicate a potential demand for certified forest products and a consumer willingness to pay to ensure forests are managed sustainably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a review of research contributions on forest management and planning using multi-criteria decision making (MCDM) based on an exhaustive literature survey. The review primarily focuses on the application aspects  highlighting theoretical underpinnings and controversies. It also examines the nature of the problems addressed and incorporation of risk into forest  management and planning decision making. The MCDM techniques covered in this review belong to several schools of thought. For each technique, a variety of empirical applications including recent studies has been reviewed. More than 60 individual studies were reviewed and classified by the method used, country of origin, number and type of criteria and options evaluated. The review serves as a guide to those interested in how to use a particular MCDM approach. Based on the review, some recent trends and future research directions are also highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological processes such as plant–animal interactions have a critical role in shaping the structure and function of ecosystems, but little is known of how such processes are modified by changes in landscape structure. We investigated the effect of landscape change on mistletoe parasitism in fragmented agricultural environments by surveying mistletoes on eucalypt host trees in 24 landscapes, each 100 km2 in size, in south-eastern Australia. Landscapes were selected to represent a gradient in extent (from 60% to 2% cover) and spatial pattern of remnant wooded vegetation. Mistletoes were surveyed at 15 sites in each landscape, stratified to sample five types of wooded elements in proportion to their relative cover. The incidence per landscape of box mistletoe (Amyema miquelii), the most common species, was best explained by the extent of wooded cover (non-linear relationship) and mean annual rainfall. Higher incidence occurred in landscapes with intermediate levels of cover (15–30%) and higher rainfall (>500 mm). Importantly, a marked non-linear decline in the incidence of A. miquelii in low-cover landscapes implies a disproportionate loss of this species in remaining wooded vegetation, greater than that attributable to decreasing forest cover. The most likely mechanism is the effect of landscape change on the mistletoebird (Dicaeum hirundinaceum), the primary seed-dispersal vector for A. miquelii. Our results are consistent with observations that habitat fragmentation initially enhances mistletoe occurrence in agricultural environments; but in this region, when wooded vegetation fell below a threshold of ~15% landscape cover, the incidence of A. miquelii declined precipitously. Conservation management will benefit from greater understanding of the components of landscape structure that most influence ecological processes, such as mistletoe parasitism and other plant–animal mutualisms, and the critical stages in such relationships. This will facilitate action before critical thresholds are crossed and cascading effects extend to other aspects of ecosystem function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automated lung nodule detection system can help spot lung abnormalities in CT lung images. Lung nodule detection can be achieved using template-based, segmentation-based, and classification-based methods. The existing systems that include a classification component in their structures have demonstrated better performances than their counterparts. Ensemble learners combine decisions of multiple classifiers to form an integrated output. To improve the performance of automated lung nodule detection, an ensemble classification aided by clustering (CAC) method is proposed. The method takes advantage of the random forest algorithm and offers a structure for a hybrid random forest based lung nodule classification aided by clustering. Several experiments are carried out involving the proposed method as well as two other existing methods. The parameters of the classifiers are varied to identify the best performing classifiers. The experiments are conducted using lung scans of 32 patients including 5721 images within which nodule locations are marked by expert radiologists. Overall, the best sensitivity of 98.33% and specificity of 97.11% have been recorded for proposed system. Also, a high receiver operating characteristic (ROC) Az of 0.9786 has been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES
We sought to examine the effects of plasma lipids, especially in remnants after a fat meal, on systemic arterial compliance (SAC), a newly recognized cardiovascular risk factor.
BACKGROUND
Post-prandial remnants correlate with coronary heart disease events through mechanisms that may include vascular dysfunction, although the effect on SAC has not been studied.
METHODS
Systemic arterial compliance was measured non-invasively over 6 h after a fat meal in 16 subjects with varying plasma triglyceride levels. Changes were related to rises in plasma lipids and remnant lipids. Systemic arterial compliance was measured in 20 subjects after a control low-fat meal.
RESULTS
The fat meal induced increments in plasma triglyceride and remnant cholesterol and triglyceride (respectively +54%, 50% and 290% at 3 h, analysis of variance <0.001). Systemic arterial compliance fell at 3 h and 6 h by 25% and 27% (analysis of variance <0.001). Baseline SAC correlated significantly with all lipid concentrations at 0, 3 h and 6 h, but only with triglyceride on stepwise regression analysis. The SAC response to the low-fat meal was very small and not significant.
CONCLUSIONS
This is the first demonstration of SAC becoming impaired after a fat meal. Remnant lipids and plasma total triglyceride appeared to contribute to the fall in SAC.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: