70 resultados para Fluoride adsorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomistic simulations of molecular adsorption onto inorganic substrates under aqueous conditions can be used to guide the rational design of new materials, fabricated using biomimetic methods. The success of such work depends critically on the model used. Here, we investigate the impact of using a rigid structural model of the (0 1 1) ?-quartz surface, over a fully flexible model, on the calculated free energy change in the adsorption of a single molecule of benzene (a simple analogue of the amino acid phenylalanine) from liquid water. Subtle differences in the mobility of the adsorbate close to the surface result in the free energy of adsorption being overestimated by the rigid model, relative to the fully flexible case. Moreover, we find that the distribution of bound configurations of the adsorbate at their respective free energy minima is different between the two models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 nanofibers (NFs) with different phases such as amorphous, anatase, mixed anatase?rutile, and rutile have been prepared by combining the electrospinning technique with the subsequent process of heat treatment or acidic-dissolution method. The obtained NFs are characterized by a Fourier transform infrared spectrometer (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption?desorption isotherm measurements. Phase structure effects of electrospun TiO2 NFs on As(III) adsorption behaviors have been investigated. The results showed a significant effect of the phase structures of TiO2 NFs on As(III) adsorption rates and capacities. Amorphous TiO2 NFs have the highest As(III) adsorption rate and capacity in the investigated samples, which can be attributed to its higher surface area and porous volume. This research provides a simple and low-cost method for phasecontrolled fabrication of TiO2 NFs and application for effective removal of arsenic from aqueous solution.

Relevância:

20.00% 20.00%

Publicador: