61 resultados para FIRE MANAGEMENT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire is a widespread disturbance and an important ecological process in semi-arid mallee ecosystems of southern Australia. Understanding the effects of fire on plants and animals is a key challenge for the conservation and management of biodiversity in this ecosystem. Commenctngin2006, the Mallee Fire and Biodiversity Project is investigating the effects of fire on range of taxa (vascular plants, invertebrates, reptiles, birds and mammals), with a focus on the influence of the properties of 'fire mosaics' on biota. A 'whole of landscape' design was employed, in which the flora and fauna were sampled in 28 study landscapes, each4 km in diameter (12.5 km2) across a 104,000 km2 area of the Murray Mallee region of Victoria, SA and NSW. Here, we summarise some key results and outputs from this project to date. These include: detailed maps of fire history and major vegetation types; a method for predicting the age of mallee vegetation; novel information about the distribution of fire age-classes in the region; and changes to vegetation structure and in the occurrence of reptile, bird and mammal species over a century-long post-fire time-frame. We also present an overview of the effects of fire mosaics (extent of particular age classes, diversity of fire age-classes) on the richness of some mallee fauna. A wealth of knowledge has been developed through the Mallee Fire and Biodiversity Project that will assist the management of mallee ecosystems in southern Australia for the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire is a major disturbance process in many ecosystems world-wide, resulting in spatially and temporally dynamic landscapes. For populations occupying such environments, fire-induced landscape change is likely to influence population processes, and genetic patterns and structure among populations. The Mallee Emu-wren Stipiturus mallee is an endangered passerine whose global distribution is confined to fire-prone, semi-arid mallee shrublands in south-eastern Australia. This species, with poor capacity for dispersal, has undergone a precipitous reduction in distribution and numbers in recent decades. We used genetic analyses of 11 length-variable, nuclear loci to examine population structure and processes within this species, across its global range. Populations of the Mallee Emu-wren exhibited a low to moderate level of genetic diversity, and evidence of bottlenecks and genetic drift. Bayesian clustering methods revealed weak genetic population structure across the species' range. The direct effects of large fires, together with associated changes in the spatial and temporal patterns of suitable habitat, have the potential to cause population bottlenecks, serial local extinctions and subsequent recolonisation, all of which may interact to erode and homogenise genetic diversity in this species. Movement among temporally and spatially shifting habitat, appears to maintain long-term genetic connectivity. A plausible explanation for the observed genetic patterns is that, following extensive fires, recolonisation exceeds in-situ survival as the primary driver of population recovery in this species. These findings suggest that dynamic, fire-dominated landscapes can drive genetic homogenisation of populations of species with low-mobility and specialised habitat that otherwise would be expected to show strongly structured populations. Such effects must be considered when formulating management actions to conserve species in fire-prone systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring an individual's thermic state in the workplace requires reliable feedback of their core temperature. However, core temperature measurement technology is expensive, invasive and often impractical in operational environments, warranting investigation of surrogate measures which could be used to predict core temperature. This study examines an alternative measure of an individual's thermic state, thermal sensation, which presents a more manageable and practical solution for Australian firefighters operating on the fireground. Across three environmental conditions (cold, warm, hot & humid), 49 Australian volunteer firefighters performed a 20-min fire suppression activity, immediately followed by 20min of active cooling using hand and forearm immersion techniques. Core temperature (Tc) and thermal sensation (TS) were measured across the rehabilitation period at five minute intervals. Despite the decline in Tc and TS throughout the rehabilitation period, there was little similarity in the magnitude or rate of decline between each measure in any of the ambient conditions. Moderate to strong correlations existed between Tc and TS in the cool (0.41, p<0.05) and hot & humid (0.57, p<0.05) conditions, however this was resultant in strong correlation during the earlier stages of rehabilitation (first five minutes), which were not evident in the latter stages. Linear regression revealed TS to be a poor predictor of Tc in all conditions (SEE=0.45-0.54°C) with a strong trend for TS to over-predict Tc (77-80% of the time). There is minimal evidence to suggest that ratings of thermal sensation, which represent a psychophysical assessment of an individual's thermal comfort, are an accurate reflection of the response of an individual's core temperature. Ratings of thermal sensation can be highly variable amongst individuals, likely moderated by local skin temperature. In account of these findings, fire managers require a more reliable source of information to guide decisions of heat stress management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wildfires have major impacts on ecosystems globally. Fire regimes (including fire frequency, intensity, season and type of fire) influence the status of species by altering habitat suitability at the site scale, and by creating heterogeneity at the landscape scale. The relative effects of site and landscape-scale fire attributes on animal species are rarely examined together. Such knowledge is important, given that fire regimes are sensitive to changing land management practices; and that fires are predicted to become larger and more frequent in some regions as a result of climate change. Here, we tested the relative influence of elements of the fire regime (fire severity, fire history) at the site-scale, and the landscape context (extent of surrounding unburnt forest, fire heterogeneity) on the occurrence of native terrestrial mammals after severe wildfire in south-eastern Australia. We conducted surveys by using automatically triggered, infrared cameras at 80 sites in fire-prone eucalypt forests, 2-3. years post-wildfire. Thirteen native mammal species were recorded, eight of which were detected with sufficient frequency for analysis. Most species were widespread (35-90% of sites) and recorded in all fire severity classes. Fire effects at the site-level were more influential than landscape context effects arising from heterogeneity in the fire regime (e.g. extent of surrounding unburnt forest). Fire severity was the most influential of the fire-regime elements investigated, but it affected different species in different ways. This study highlights three main points relevant to conservation of terrestrial mammals after wildfire. First, spatial variation in fire severity associated with wildfire (ranging from unburned to severely burned stands) is an important contributor to the post-fire status of species. Second, post-fire environmental conditions are significant: here, rapid regeneration of vegetation following drought-breaking rains greatly influenced the suitability of post-fire habitats. Third, it is valuable to consider the effects of the fire regime at multiple scales, including both the site (forest stand) and its landscape context. Insights from short-term surveys, such as this, will be enhanced by complementary longitudinal studies, especially where they encompass environmental variation through the post-fire succession.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resource selection by animals influences individual fitness, the abundance of local populations, and the distribution of species. Further, the degree to which individuals select particular resources can be altered by numerous factors including competition, predation, and both natural- and human-induced environmental change. Understanding the influence of such factors on the way animals use resources can guide species conservation and management in changing environments. In this study, we investigated the effects of a prescribed fire on small-scale (microhabitat) resource selection, abundance, body condition, and movement pathways of a native Australian rodent, the bush rat (Rattus fuscipes). Using a before-after, control-impact design, we gathered data from 60 individuals fitted with spool and line tracking devices. In unburnt forest, selection of resources by bush rats was positively related to rushes, logs and complex habitat, and negatively related to ferns and litter. Fire caused selection for spreading grass, rushes, and complex habitat to increase relative to an unburnt control location. At the burnt location after the fire, rats selected patches of unburnt vegetation, and no rats were caught at a trapping site where most of the understory had been burnt. The fire also reduced bush rat abundance and body condition and caused movement pathways to become more convoluted. After the fire, some individuals moved through burnt areas but the majority of movements occurred within unburnt patches. The effects of fire on bush rat resource selection, movement, body condition, and abundance were likely driven by several linked factors including limited access to shelter and food due to the loss of understory vegetation and heightened levels of perceived predation risk. Our findings suggest the influence of prescribed fire on small mammals will depend on the resulting mosaic of burnt and unburnt patches and how well this corresponds to the resource requirements of particular species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitigating the impacts of large-scale fires on biodiversity is becoming increasingly important as their frequency increases. In response, fire managers have engaged with the concept that retaining small unburnt residual areas of vegetation within extensively burnt landscapes may facilitate biodiversity conservation. However, it remains uncertain how the size and isolation of these unburnt residuals influence faunal distributions, persistence and recovery following fire. We used a replicated observation study to test bird responses to the size and isolation of unburnt residuals in a mallee woodland area recently burnt by a 28 000 ha wildfire in southern Australia. The scale of our study provided a rare opportunity to consider the responses of large mobile organisms to fire-induced habitat fragmentation. Within five replicated spatial blocks, we crossed two levels of isolation with large (5-7 ha) and small (1-3 ha) unburnt patches and matrix sites burnt 5 years previously. We compared these site types to six continuous (non-fragmented) unburnt sites. We surveyed each site on eight occasions. Most birds occurred more frequently in unburnt habitat beyond the extent of the fire. Bird responses to the availability and spatial distribution of unburnt remnants within the fire were largely influenced by their ability to use the recently burnt matrix. Occurrence of five species was higher in unburnt residuals when more of the landscape within 500 m was burnt. A fire refuge effect may be likely for two competitive species that occurred more frequently in unburnt residuals than in the burnt matrix or continuous unburnt habitat. For the weebill, recolonization following fire was likely to occur gradually over time from ex situ sources. Synthesis and applications. To maintain avian diversity in fire-prone landscapes, our results suggest a need to shift management focus from creating networks of small unburnt patches towards preserving large, intact areas of habitat. However, five species common to the burnt matrix preferentially selected residual patches when unburnt resources were locally scarce. Therefore, to benefit birds, land managers should limit the extent of applied burns and use narrow burns. When planning large burns, practitioners should consider that a number of species will remain absent from the landscape for several decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is causing fire regime shifts in ecosystems worldwide. Plant species with regeneration strategies strongly linked to a fire regime, such as obligate seeders, may be particularly threatened by these changes. It is unclear whether changes in fire regimes or the direct effects of climate change will be the dominant threats to obligate seeders in future. We investigated the relative importance of fire-related variables (fire return interval andfire severity) and environmental factors (climate and topography) on seedling establishment in the world's tallest angiosperm, an obligate seeder, Eucalyptus regnans. Throughout its range, this species dominates the wet montane forests of south-eastern Australia and plays a keystone role in forest structure. Following major wildfires, we investigated seedling establishment in E. regnanswithin 1 year of fire as this is a critical stage in the regeneration niche of obligate seeders. Seedling presence and abundance were strongly related to the occurrence of fire but not to variation in fire severity (moderate vs. high severity). Seedling abundance increased with increasing fire return interval (range 26-300 years). First-year seedling establishment was also strongly associated with low temperatures and with high elevations, high precipitation and persistent soil water availability. Our results show that both climate and fire regimes are strong drivers of E. regnans seedling establishment. The predicted warming and drying of the climate might reduce the regeneration potential for some obligate seeders in future and these threats are likely to be compounded by changes in fire regimes, particularly increases in fire frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although fire is a major form of natural disturbance worldwide, both fire-derived landscape context effects and the impacts of fire severity are poorly known for many species. To address this knowledge gap, we quantified the response of Australian arboreal marsupials to: (1) the spatial effects of fire, (2) fire severity, and (3) fire impacts on the availability of critical nesting resources - hollow-bearing trees.We identified substantial differences among species in response to fire severity and landscape-scale fire. The Sugar Glider (Petaurus breviceps) and the endangered Leadbeater's Possum (Gymnobelideus leadbeateri) were extremely rare on burned sites irrespective of fire severity. In addition, these two species declined with the amount of burned forest in the surrounding landscape even when their habitat remained unburnt. The Mountain Brushtail Possum (Trichosurus cunninghami) and the Greater Glider (Petauroides volans) both occurred on burned and unburned sites. The Greater Glider responded negatively to fire severity at the site level and also negatively to the amount of forest burned in the surrounding landscape. The abundance of the Mountain Brushtail Possum was lowest on sites subject to moderate severity fire.On unburned sites, the presence and abundance of virtually all species was characterised by a common positive response to the availability of nesting resources in hollow-bearing trees.Our findings underscore the importance of management practices to better protect species that decline after fire. These include conserving areas of unburned forest, particularly those with hollow-bearing trees which are critical nest sites for arboreal marsupials. These recommendations are currently the opposite of existing management practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential that within these envelopes, forest is protected from logging, roads, and other developments so that the ecological processes related to the establishment and subsequent use of fire refuges are maintained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I studied how mammals responded to the 2009 Black Saturday wildfire. Two years post-fire, I found that mammal species were distributed across the wildfire area, and were not relying on unburnt refuges or gullies for survival. Variation in fire severity did influence several species, which provides valuable insights for management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Losses to life and property from unplanned fires (wildfires) are forecast to increase because of population growth in peri-urban areas and climate change. In response, there have been moves to increase fuel reduction--clearing, prescribed burning, biomass removal and grazing--to afford greater protection to peri-urban communities in fire-prone regions. But how effective are these measures? Severe wildfires in southern Australia in 2009 presented a rare opportunity to address this question empirically. We predicted that modifying several fuels could theoretically reduce house loss by 76%-97%, which would translate to considerably fewer wildfire-related deaths. However, maximum levels of fuel reduction are unlikely to be feasible at every house for logistical and environmental reasons. Significant fuel variables in a logistic regression model we selected to predict house loss were (in order of decreasing effect): (1) the cover of trees and shrubs within 40 m of houses, (2) whether trees and shrubs within 40 m of houses was predominantly remnant or planted, (3) the upwind distance from houses to groups of trees or shrubs, (4) the upwind distance from houses to public forested land (irrespective of whether it was managed for nature conservation or logging), (5) the upwind distance from houses to prescribed burning within 5 years, and (6) the number of buildings or structures within 40 m of houses. All fuel treatments were more effective if undertaken closer to houses. For example, 15% fewer houses were destroyed if prescribed burning occurred at the observed minimum distance from houses (0.5 km) rather than the observed mean distance from houses (8.5 km). Our results imply that a shift in emphasis away from broad-scale fuel-reduction to intensive fuel treatments close to property will more effectively mitigate impacts from wildfires on peri-urban communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The underlying thinking in bushfire management has much to offer anaesthetists. Although it is imperative to develop improved methods of predicting the risk of perioperative patient morbidity and mortality, we must avoid them being used in a way that can undermine both individual clinical judgment on a case-by-case basis and the effectivenessof the methods themselves. This requires all concerned to be aware of the reliability and validity of the algorithms used to provide such predictions as well as the quality of the data upon which they are based. Like fire behaviour analysts, anaesthetists should still be free to trust their knowledge, expertise and experience. When experienced fire fighters sense a conflict between what the evidence on the ground is telling them and what a predictive fire map is saying, they use their understanding of limitations of the fire analysts’ predictions to inform their own professional judgment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time since last fire and fire frequency are strong determinants of plant community composition in fire-prone landscapes. Our study aimed to establish the influence of time since last fire and fire frequency on plant community composition and diversity of a south-west Australian semi-arid shrubland. We employed a space-for-time approach using four fire age classes: 'young', 8-15years since last fire; 'medium', 16-34; 'old', 35-50; and 'very old', 51-100; and three fire frequency classes: burnt once, twice and three times within the last 50years. Species diversity was compared using one-way ANOVA and species composition using PERMANOVA. Soil and climatic variables were included as covariables to partition underlying environmental drivers. We found that time since last fire influenced species richness, diversity and composition. Specifically, we recorded a late successional transition from woody seeders to long-lived, arid-zone, resprouting shrub species. Fire frequency did not influence species richness and diversity but did influence species composition via a reduction in cover of longer-lived resprouter species - presumably because of a reduced ability to replenish epicormic buds and/or sufficient starch stores. The distinct floristic composition of old and very old habitat, and the vulnerability of these areas to wildfires, indicate that these areas are ecologically important and management should seek to preserve them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire is a common form of recurrent disturbance in many ecosystems, but ecological theory has a poor record of predicting animal responses to fire, at both species and assemblage levels. As a consequence, there is limited information to guide fire regime management for biodiversity conservation. We investigated a key research gap in the fire ecology literature; that is, the response of an anuran assemblage to variation in the fire return interval. We tested two hypotheses using a spatially-explicit fire database collected over a 40 year period: 1) species richness would peak at intermediate levels of disturbance. 2) Species with traits which enabled them to escape fire - burrowing or canopy dwelling - would be better able to survive fires, resulting in higher levels of occurrence in frequently burned sites. We found no evidence for either a reduction in species richness at locations with short fire return intervals, or a peak in species richness at intermediate levels of disturbance. Although we found some support for individual species responses to fire return intervals, these were inconsistent with the interpretation of burrowing or climbing being functional traits for fire-avoidance. Instead burrowing and climbing species may be more likely to be disadvantaged by frequent fire than surface dwelling frogs. More generally, our results show that many species in our study system have persisted despite a range of fire frequencies, and therefore that active management of fire regimes for anuran persistence may be unnecessary. The responses of anurans to fire in this location are unlikely to be predictable using simple life-history traits. Future work should focus on understanding the mechanistic underpinnings of fire responses, by integrating information on animal behavior and species' ecological requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altered fire regimes are a driver of biodiversity decline. To plan effective management, we need to know how species are influenced by fire and to develop theory describing fire responses. Animal responses to fire are usually measured using methods that rely on animal activity, but animal activity may vary with time since fire, potentially biasing results. Using a novel approach for detecting bias in the pit-fall trap method, we found that leaf-litter dependent reptiles were more active up to 6 weeks after fire, giving a misleading impression of abundance. This effect was not discovered when modelling detectability with zero-inflated binomial models. Two species without detection bias showed early-successional responses to time since fire, consistent with a habitat-accommodation succession model. However, a habitat specialist did not have the predicted low abundance after fire due to increased post-fire movement and non-linear recovery of a key habitat component. Interactions between fire and other processes therefore must be better understood to predict reptile responses to changing fire-regimes. We conclude that there is substantial bias when trapping reptiles after fire, with species that are otherwise hard to detect appearing to be abundant. Studies that use a survey method based on animal activity such as bird calls or animal movements, likely face a similar risk of bias when comparing recently-disturbed with control sites.