58 resultados para Estuaries


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bangladesh exemplifies the complex challenges facing densely populated coastal regions. The
pressures on the country are immense: around 145 million people live within an area of just 145,000 sq-km at
the confluence of three major river systems: the Ganges, the Brahmaputra and the Meghna. While progress
has been made, poverty remains widespread, with around 39% of children under five malnourished. Most of
its land-mass lies below 10m above sea level with considerable areas at sea level, leading to frequent and
prolonged flooding during the monsoons. Sea level rise is leading to more flooding as storm surges rise off
higher sea levels, pushing further inland. Higher sea levels also result in salt-water intrusion into freshwater
coastal aquifers and estuaries, contaminating drinking water and farmland. Warmer ocean waters are also
expected to lead to an increase in the intensity of tropical storms.
Bangladesh depends on the South Asian summer monsoon for most of its rainfall which is expected to
increase, leading to more flooding. Climate scientists are also concerned about the stability of monsoon and
the potential for it to undergo a nonlinear phase shift to a drier regime. Bangladesh faces an additional
hydrological challenge in that the Ganges and Brahmaputra rivers both rise in the Himalaya-Tibetan Plateau
region, where glaciers are melting rapidly. The Intergovernmental Panel on Climate Change (IPCC)
concluded that rapid melting is expected to increase river flows until around the late-2030s, by which time
the glaciers are expected to have shrunk from their 1995 extent of 500,000 sq-km to an expected 100,000 sqkm.
After the 2030s, river flows could drop dramatically, turning the great glacier-fed rivers of Asia into
seasonal monsoon-fed rivers. The IPCC concluded that as a result, water shortages in Asia could affect more
than a billion people by the 2050s. Over the same period, crop yields are expected to decline by up to 30% in
South Asia due to a combination of drought and crop heat stress. Bangladesh is therefore likely to face
substantial challenges in the coming decades.
In order to adequately understand the complex, dynamic, spatial and nonlinear challenges facing Bangladesh,
an integrated model of the system is required. An agent-based model (ABM) permits the dynamic
interactions of the economic, social, political, geographic, environmental and epidemiological dimensions of
climate change impacts and adaptation policies to be integrated via a modular approach. Integrating these
dimensions, including nonlinear threshold events such as mass migrations, or the outbreak of conflicts or
epidemics, is possible to a far greater degree with an ABM than with most other approaches.
We are developing a prototype ABM, implemented in Netlogo, to examine the dynamic impacts on poverty,
migration, mortality and conflict from climate change in Bangladesh from 2001 to 2100. The model employs
GIS and sub-district level census and economic data and a coarse-graining methodology to allow model
statistics to be generated on a national scale from local dynamic interactions. This approach allows a more
realistic treatment of distributed spatial events and heterogeneity across the country. The aim is not to
generate precise predictions of Bangladesh’s evolution, but to develop a framework that can be used for
integrated scenario exploration. This paper represents an initial report on progress on this project. So far the
prototype model has demonstrated the desirability and feasibility of integrating the different dimensions of
the complex adaptive system and, once completed, is intended to be used as the basis for a more detailed
policy-oriented model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the benefits of using oral history as a tool for the sustainable management of estuaries. Twenty-two semi-structured interviews were conducted to generate oral history records for the Balcombe Estuary Reserve, a small estuary in a periurban zone on the Mornington Peninsula, Victoria. These interviews establish a more complete picture of changes in land use and ecological change to the estuary since European settlement of the area, and document community values. The interviews were followed with a survey to further explore management issues in the area. Use of oral history was found to be an effective approach to assist holistic estuarine management, especially when complemented by other sources of information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is the first study to examine the interaction between estuarine discharge and coastal environments, for intermittent estuaries in Victoria. The study examined water quality, bacteria and seaweed communities and the diet of mussels, concluding that estuarine discharge is an important driver for the productivity of nearshore marine environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The management of social, economic, and ecological assets in coastal zones is fundamental to the maintenance and sustainability of coastal resources. A significant issue in this discussion is the role of governance structures. In Australia the governance of the coastal zone includes a range of institutional authorities, processes, and procedures that set the context for decision making about coastal management. As well as the formal institutional arrangements there is also a maze of other interests such as development commissions, NGOs, Indigenous Native Title holders and other stakeholders including recreational interests. A major issue for governance arrangements is the considerable gap that often exists between how those interests interpret and develop their positions especially when the knowledge is derived from different systems – scientific, managerial, lay and indigenous. This paper will explore the development of an Estuary Entrance Management Support System (EEMSS) in south west Victoria Australia. The EEMSS is a decision support tool to assist estuary managers in determining whether to artificially open a river mouth. A significant part of the process adopted was community participation which involved a ‘steps’ approach to engage local community groups and landholders. It is the process of engaging different knowledge systems in a meaningful conversation that has led to a system that now gains support from all of the stakeholders in the management of different estuaries. The paper will discuss the processes that surround the EEMSS and outline some lessons that arise in context of the ‘project state’.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report provides a consistent and systematic approach to the determination of environmental water requirements for estuaries in Victoria.

Victoria’s limited water resources are subject to competing demands. These demands, including town water supplies and irrigation requirements, often deplete the flow entering estuaries and put their environmental values at risk.

The Estuary Environmental Flows Assessment Methodology (EEFAM) is a standard methodology which can be applied in a consistent manner across all Victorian estuaries, according to their priority. It is not anticipated that this method would be used for the Gippsland Lakes or Port Phillip or Western Port Bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stakeholder involvement in the management of estuaries is a necessary element of good environmental governance. In Victoria, Australia, a key challenge for estuary managers is whether or not estuaries should be artificially opened since many river mouths close ‘naturally’ from time to time. Estuary closure resulting in raised estuarine water levels leads to economic and social impacts on local communities. In the past these effects have been addressed by artificial river mouth openings, often without reference to associated environmental impacts. This article discusses the development and features of an Estuary Entrance Management Support System and considers its performance against principles of effective environmental management. It concludes that, in bringing together technical information with stakeholder input through a structured process, such a system makes a useful contribution to improving estuary entrance management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known on the degree to which terrestrial organic matter delivered to tropical estuaries contributes to estuarine consumers. Here, stable isotope analysis is used to constrain this contribution for contrasting east African estuaries whose catchments differ in relative C3/C4 vegetation cover. As these two types of vegetation differ strongly in δ13C, we anticipated that terrestrial subsidies would be reflected in a gradient in estuarine consumer δ13C values, following the relative importance of C3 (characterised by low δ13C) vs. C4 (characterised by high δ13C) cover. Five estuaries were sampled for aquatic biogeochemical parameters, primary producers and consumers of different trophic ecologies: the Zambezi (catchment with a C3/C4 cover of 61/39%) in Mozambique, the Tana in Kenya (36/64%) and the Betsiboka (42/58%), Rianila (85/15%) and Canal des Pangalanes (C3-dominated) in Madagascar. Sampling was done before and after the 2010/2011 wet season. There were positive relationships between the proportion of C4 cover in the catchment and turbidity, δ13CDIC, δ13CDOC, δ13CPOC and δ15NPN. There were also significant positive relationships between δ13CPOC and consumer δ13C and between δ15NPN and consumer δ15N for all consumer trophic guilds, confirming the incorporation of organic material transported from the catchments by estuarine consumers, and implying that this material is transported up to high trophic level fish. Bayesian mixing models confirmed that C4 material was the most important source for the highly turbid, C4-dominated estuaries, contributing up to 61–91% (95% CI) to phytodetritivorous fish in the Betsiboka, whereas for the less turbid C3-dominated estuaries terrestrial subsidies were not as important and consumers relied on a combination of terrestrial and aquatic sources. This shows that the ecology of the overall catchment affects the estuaries at the most basic, energetic level, and activities that alter the turbidity and productivity of rivers and estuaries can affect food webs well beyond the area of impact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report sets out a method to determine the environmental water requirements of estuaries in Victoria. The estuary environmental flows assessment method (EEFAM) is a standard methodology which can be applied consistently across Victorian estuaries.
The primary objective of EEFAM is to define a flow regime to maintain or enhance the ecological health of an estuary. The method is used to inform Victorian water resource planning processes.
The output of EEFAM is a recommended flow regime for estuaries. This recommendation is developed from the known dependence of the estuary’s flora, fauna, biogeochemical and geomorphological features on the flow regime. EEFAM is an evidence-based methodology. This bottom-up or ‘building block’ approach conforms to the asset-based approach of the Victorian River Health Strategy and regional river health strategies.
EEFAM is based on and expands on FLOWS, the Victorian method for determining environmental water requirements in rivers. The list of tasks has been modified and re-ordered in EEFAM to reflect environmental and management issues specific to estuaries. EEFAM and FLOWS can be applied
simultaneously to a river and its estuary as part of a whole-of-system approach to environmental flow requirements. Like the FLOWS method, EEFAM is modular, and additional components can be readily incorporated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human activities in coastal areas frequently cause loss of benthic macrophytes (e.g. seagrasses) and concomitant increases in microalgal production through eutrophication. Whether such changes translate into shifts in the composition of sediment detritus is largely unknown, yet such changes could impact the role these ecosystems play in sequestrating CO 2. We reconstructed the sedimentary records of cores taken from two sites within Botany Bay, Sydney - the site of European settlement of Australia - to look for human-induced changes in dominant sources of detritus in this estuary. Cores covered a period from the present day back to the middle Holocene (~6000 years) according to 210Pb profiles and radiocarbon ( 14C) dating. Depositional histories at both sites could not be characterized by a linear sedimentation rate; sedimentation rates in the last 30-50 years were considerably higher than during the rest of the Holocene. C : N ratios declined and began to exhibit a microalgal source signature from around the time of European settlement, which could be explained by increased nutrient flows into the Bay caused by anthropogenic activity. Analysis of stable isotopic ratios of 12C/ 13C showed that the relative contribution of seagrass and C 3 terrestrial plants (mangroves, saltmarsh) to detritus declined around the time of rapid industrial expansion (~1950s), coinciding with an increase in the contribution of microalgal sources. We conclude that the relative contribution of microalgae to detritus has increased within Botany Bay, and that this shift is the sign of increased industrialization and concomitant eutrophication. Given the lower carbon burial efficiencies of microalgae (~0.1%) relative to seagrasses and C 3 terrestrial plants (up to 10%), such changes represent a substantial weakening of the carbon sink potential of Botany Bay - this occurrence is likely to be common to human-impacted estuaries, and has consequences for the role these systems play in helping to mitigate climate change. © 2011 Blackwell Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predicting ecological response to climate change is often limited by a lack of relevant local data from which directly applicable mechanistic models can be developed. This limits predictions to qualitative assessments or simplistic rules of thumb in data-poor regions, making management of the relevant systems difficult. We demonstrate a method for developing quantitative predictions of ecological response in data-poor ecosystems based on a space-for-time substitution, using distant, well-studied systems across an inherent climatic gradient to predict ecological response. Changes in biophysical data across the spatial gradient are used to generate quantitative hypotheses of temporal ecological responses that are then tested in a target region. Transferability of predictions among distant locations, the novel outcome of this method, is demonstrated via simple quantitative relationships that identify direct and indirect impacts of climate change on physical, chemical and ecological variables using commonly available data sources. Based on a limited subset of data, these relationships were demonstrably plausible in similar yet distant (>2000 km) ecosystems. Quantitative forecasts of ecological change based on climate-ecosystem relationships from distant regions provides a basis for research planning and informed management decisions, especially in the many ecosystems for which there are few data. This application of gradient studies across domains - to investigate ecological response to climate change - allows for the quantification of effects on potentially numerous, interacting and complex ecosystem components and how they may vary, especially over long time periods (e.g. decades). These quantitative and integrated long-term predictions will be of significant value to natural resource practitioners attempting to manage data-poor ecosystems to prevent or limit the loss of ecological value. The method is likely to be applicable to many ecosystem types, providing a robust scientific basis for estimating likely impacts of future climate change in ecosystems where no such method currently exists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In intermittently open estuaries, the sources of organic matter sustaining benthic invertebrates are likely to vary seasonally, particularly between periods of connection and disconnection with the ocean and higher and lower freshwater flows. This study investigated the contribution of allochthonous and autochthonous primary production to the diet of representative invertebrate species using stable isotope analysis (SIA) during the austral summer and winter (2008, 2009) in an intermittently open estuary on the south-eastern coast of Australia. As the study was conducted towards the end of a prolonged period of drought, a reduced influence of freshwater/terrestrial organic matter was expected. Sampling was conducted along an estuarine gradient, including upper, middle and lower reaches and showed that the majority of assimilated organic matter was derived from autochthonous estuarine food sources. Additionally, there was an input of allochthonous organic matter, which varied along the length of the estuary, indicated by distinct longitudinal trends in carbon and nitrogen stable isotope signatures along the estuarine gradient. Marine seaweed contributed to invertebrate diets in the lower reaches of the estuary, while freshwater/terrestrial organic matter had increased influence in the upper reaches. Suspension-feeding invertebrates derived large parts of their diet from freshwater/terrestrial material, despite flows being greatly reduced in comparison with non-drought years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon cycling on the east coast of Australia has the potential to be strongly affected by El Niño-Southern Oscillation (ENSO) intensification and coastal development (industrialization and urbanization). We performed paleoreconstructions of estuarine sediments from a seagrass-dominated estuary on the east coast of Australia (Tuggerah Lake, New South Wales) to test the hypothesis that millennial-scale ENSO intensification and European settlement in Australia have increased the transfer of organic carbon from land into coastal waters. Our data show that carbon accumulation rates within coastal sediments increased significantly during periods of maximum millennial-scale ENSO intensity ("super-ENSO") and coastal development. We suggest that ENSO and coastal development destabilize and liberate terrestrial soil carbon, which, during rainfall events (e.g., La Niña), washes into estuaries and becomes trapped and buried by coastal vegetation (seagrass in this case). Indeed, periods of high carbon burial were generally characterized as having rapid sedimentation rates, higher content of fine-grained sediments, and increased content of wood and charcoal fragments. These results, though preliminary, suggest that coastal development and ENSO intensificationboth of which are predicted to increase over the coming centurycan enhance capture and burial of terrestrial carbon by coastal ecosystems. These findings have important relevance for current efforts to build an understanding of terrestrial- marine carbon connectivity into global carbon budgets.