96 resultados para Epoxy Resin


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new route to prepare nanostructured thermosets by the utilization of intermolecular hydrogen-bonding interactions is demonstrated here. In this study, competitive hydrogen-bonding-induced microphase separation (CHIPS) in epoxy resin (ER) containing an amphiphilic block copolymer poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) is investigated for the first time. The phase separation takes place due to the disparity in the hydrogen-bonding interactions in ER/P2VP and ER/PCL pairs leading to the formation of ordered nanostructures in the ER/block copolymer blends. SAXS and TEM results indicate that the hexagonally packed cylindrical morphology of neat PCL-b-P2VP block copolymer remains but becomes a core-shell structure at 10 wt % addition of ER, and changes to regular lamellae structures at 20-50 wt % then to disordered lamellae with 60 wt % ER. Wormlike structures are obtained in the blends with 70 wt % ER, followed by a completely homogeneous phase of ER/P2VP and ER/PCL. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen-bonding interactions between each component block copolymer and the homopolymer. This versatile method to develop nanostructured thermosets, involving competitive hydrogen-bonding interactions, could be used for the fabrication of hierarchical and functional materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of amphiphilic poly(ethylene glycol)-block-poly(bisphenol A carbonate) (PEG-b-PC) block copolymer is presented here using a simple bio-chemistry coupling reaction between poly(bisphenol A carbonate) (PC) with a monomethylether poly(ethylene glycol) (mPEG-OH) block, mediated by dicyclohexylcarbodiimide/4-dimethylaminopyridine. This method inherently allows great flexibility in the choice of starting materials as well as easy product purification only requiring phase separation and water washing. Collective data from Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and modulated dynamic scanning calorimetry (MDSC) confirmed the successful attachment of the poly(ethylene glycol) (mPEG-OH) and poly(bisphenol A carbonate) (PC) blocks. The preparation of nano-capsules was carried out by sudden addition of water to PEG-b-PC copolymers dispersed in THF, resulting in the controlled precipitation (i.e. thermodynamic entrapment) of the copolymer. Nano-capsules as small as 85 nm ± 30 nm were produced using this simple and fast methodology. We also demonstrate that encapsulating a water-insoluble bisphenol A diglycidyl ether (DGEBA) epoxy resin is possible highlighting the potential use of these capsules as a chemical delivery system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A nano-modified matrix based on an epoxy resin and montmorillonite (MMT) layered silicates, was successfully infiltrated through 10 ply of carbon fibre preform. A combined fabrication process of a vacuum assisted resin infusion method (VARIM) followed by a rapid heating rate and mechanical vibration during cure, facilitated the infiltration of the nano-modified matrix through the preform. This was achieved by dispersing the MMT clay in the resin and ensuring that the viscosity of the nano-modified matrix remained low during fabrication. SEM-EDX (energy dispersive X-ray spectroscopy) spectra showed that chemical constituents within MMT clay including silicon, aluminium and magnesium elements had permeated through the fibre preform and were detected throughout the laminate. A homogeneous resin/particle distribution was achieved with the size of clay particles ranging from 100 nm to 1 μm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

 Strengthened concrete structures using advanced materials such as CFRP composites has been proved an efficient technique. The bonding agent (epoxy resin) used to bond the CFRP composites with the concrete structures is the main parameter that contributes to premature failure. I was able to recommend to a new modified epoxy resin to enhance the general behavior of the strengthened concrete structure with respect to durability and ductility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular simulation can provide valuable guidance in establishing clear links between structure and function to enable the design of new polymer-based materials. However, molecular simulation of thermoset polymers in particular, such as epoxies, present specific challenges, chiefly in the credible preparation of polymerised samples. Despite this need, a comprehensive, reproducible and robust process for accomplishing this using molecular simulation is still lacking. Here, we introduce a clear and reproducible cross-linking protocol to reliably generate three dimensional epoxy cross-linked polymer structures for use in molecular simulations. This protocol is sufficiently detailed to allow complete reproduction of our results, and is applicable to any general thermoset polymer. Amongst our developments, key features include a reproducible procedure for calculation of partial atomic charges, a reliable process for generating and validating an equilibrated liquid precursor mixture, and establishment of a novel, robust and reproducible protocol for generating the three-dimensional cross-linked solid polymer. We use these structures as input to subsequent molecular dynamics simulations to calculate a range thermo-mechanical properties, which compare favourably with experimental data. Our general protocol provides a benchmark for the process of simulating epoxy polymers, and can be readily translated to prepare and model epoxy samples that are dynamically cross-linked in the presence of surfaces and nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

‘Melding’ is a novel in situ method for joining thermosetting composite structures, without the need of adhesives. Laminate joining is achieved using uncrosslinked resin matrix of the pre-preg. This study used Hexply914C pre-preg material to characterize melded CFRP structures produced using the melding method. A designated area of a laminate was maintained at temperatures below 40 °C retaining uncured (B-staged) material, while the remainder of the laminate was cured at 175 °C. After a 2.5 h cure cycle, the cured region showed a high degree of cure (0.88) and glass transition temperature (176 °C). The uncured area of the same laminate was cured in a second stage, simulating an in situ melded joint. By controlling the temperature and duration of the intermediate dwell and affecting minimum viscosity values prior to final cure, low values of porosity (<0.5%) were achieved. The mechanical properties of the resulting joint were consistent throughout the melded laminate. Flexural strength (1600 MPa), flexural modulus (100–105 MPa) and short beam strength (105–115 MPa) values observed where equivalent or greater than those found in the recommended autoclave cured control specimens. After the entire laminate was post cured, glass transition temperatures of 230 °C (peak tan δ) were observed in all areas of the laminate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work aims at finding a relationship between kinetic models of thermal degradation process with the physiochemical structure of epoxy-clay nanocomposites in order to understand its service temperature. In this work, two different types of modified clays, including clay modified with (3-aminopropyl)triethoxysilane (APTES) and a commercial organoclay, were covalently and non-covalently incorporated into epoxy matrix, respectively. The effect of different concentrations of silanized clay on thermal behaviour of epoxy nanocomposites were first investigated in order to choose the optimum clay concentration. Afterwards, thermal characteristics of the degradation process of epoxy nanocomposites were obtained by TGA analysis and the results were employed to determine the kinetic parameters using model-free isoconversional and model-fitting methods. The obtained kinetic parameters were used to model the entire degradation process. The results showed that the incorporation of the different modified clay into epoxy matrix change the mathematical model of the degradation process, associating with different orientations of clay into epoxy matrix confirming by XRD results. The obtained models for each epoxy nanocomposite systems were used to investigate the dependence of degradation rate and degradation time on temperature and conversion degree. Our results provide an explanation as to how the life time of epoxy and its nanocomposites change in a wide range of operating temperatures as a result of their structural changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The drive towards rapid cure thermosetting composites requires a better understanding of the residual stresses that develop during curing. This study investigates the impact of residual stresses on the interlaminar shear strength of resin-infused epoxy/anhydride carbon-fibre laminates. The magnitude of the residual stress was varied by changing the initial injection cure temperature between 75 °C and 145 °C. The corresponding cycle times and the final glass transition temperature of the resin were also measured. The experimentally measured chemical shrinkage and thermal expansion properties of the resin after vitrification were used as inputs to a finite element analysis to calculate the peak residual stresses in the composite. An increase in the initial cure temperature from 85 to 135 °C resulted in an increase of 25% in the residual stress, which led to an experimentally measured reduction in the composite's short beam shear strength of approximately 16% (8 MPa), in good agreement with model prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2/2 twill weave fabric carbon fibre reinforced epoxy matrix composite MTM56/CF0300 was used to investigate the effect of different manufacturing processes on the interlaminar fracture toughness. Double cantilever beam tests were performed on composites manufactured by hot press, autoclave and 'Quickstep' processes. The 'Quickstep' process was recently developed in Perth, Western Australia for the manufacture of advanced composite components. The values of the mode I critical strain energy release rate (G1d were compared and the results showed that the composite specimens manufactured by the autoclave and the 'Quickstep' process had much higher interlaminar fracture toughness than the specimen produced by the hot press. When compared to specimens manufactured by the hot press, the interlaminar fracture toughness values of the Quickstep and autoclave samples were 38% and 49% higher respectively. The 'Quickstep' process produced composite specimens that had comparable interlaminar fracture toughness to autoclave manufactured composites. Scanning electron microscopy (SEM) was employed to study the topography of the mode I interlaminar fracture surface and dynamic mechanical analysis (DMA) was performed to investigate the fibre/matrix interphase. SEM micrography and DMA spectra indicated that autoclave and 'Quickstep' produced composites with stronger fibre/matrix adhesion than hot press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delamination resistance and nanocreep properties of 2/2 twill weave carbon epoxy composites manufactured by hot press, autoclave, and QuickstepTM process are characterized and analyzed. Quickstep is a fluid filled, balanced pressure heated floating mold technology, which is recently developed in Perth, Western Australia for the manufacture of advanced composite components. Mode I and Mode II interlaminar fracture toughness tests, and nanoindentation creep tests on matrix materials show that the fast ramp rate of the Quickstep process provides mechanical properties comparable to that of autoclave at a lower cost for composite manufacturing. Low viscosity during ramping process and good fiber wetting are believed to be the reasons that this process produces composites with high delamination and creep-resistant properties. Nanocreep properties are analyzed using a Kelvin–Voigt model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of aluminium foams can be improved by matrix reinforcement and resin-impregnation methods. In the present study, aluminium foams were reinforced by both ceramic particulate reinforcing of the aluminium matrix and resin-impregnating pores. The mechanical properties and the energy absorption of the reinforced aluminium foams were investigated by dynamic and quasi-static compression. Results indicated that the ceramic particle additions of CBN, SiC and B4C in aluminium foams increase the peak stress, elastic modulus and energy absorption of the aluminium foams, under both conditions of dynamic and quasi-static compression. Moreover, the aluminium foams with and without ceramic particle additions exhibited obvious strain rate sensitivity during dynamic compression. Furthermore, the resin-impregnation improves the mechanic properties and energy absorption of aluminium foams significantly. However, aluminium foams with resin-impregnation showed negligible strain rate sensitivity under dynamic compression. It is reported that both the ceramic particle addition and resin-impregnation can be effective techniques to improve the mechanical and the energy absorption properties of aluminium foams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An accurate kinetics model is essential for understanding the curing mechanism and predicting the end properties of polymer materials. Graphite/epoxy AS4/ 8552 prepreg is a recent high-performance thermosetting composite modified with thermoplastic, which is being used in the manufacture of aircraft and military structures. The isothermal cures of this system along with another thermoplastic toughened high-performance prepreg, the T800H/3900-2 system, were investigated by real-time Fourier transform infrared (FTIR) spectroscopy. The cure rate was quantitatively analyzed based on the concentration profiles of both the epoxy and primary amine groups. Three autocatalytic models were used to determine kinetics parameters for both composite systems. The model which utilizes an empirical term, the final relative conversion (at different isothermal curing temperatures), describes the experimental data of both systems more satisfactorily than the model which applies a diffusion factor. The modeling results suggest that the curing of epoxy within both prepregs can be assumed to be a second order process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melding is an efficient three step composite joining process that involves the selective cure of composite adherends before the final adhesive joint is created using the adherends own resin system. Melding does not require many of the processes and compromises associated with conventional techniques like adhesive bonding and mechanical fastening.

The Taguchi design of experiments technique was used to optimise three melded joint factors for a unidirectional epoxy prepreg material. The performance of the joint was evaluated using tensile and flexural strength as well as flexural modulus. It was found that not having a step for every ply in the joint was the most influential factor affecting joint performance. This was due to the differing failure modes induced by this factors various levels, which varied the amount of fibre breakage at failure.