81 resultados para Electrochemical impedance spectroscopy techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible dye-sensitized solar cells (DSSCs) built on plastic substrates have attracted great interest as they are lightweight and can be roll-to-roll printed to accelerate production and reduce cost. However, plastic substrates such as PEN and PET are permeable to water, oxygen and volatile electrolyte solvents, which is detrimental to the cell stability. Therefore, to address this problem, in this work, an ionic liquid (IL) electrolyte is used to replace the volatile solvent electrolyte. The initial IL-based devices only achieved around 50% of the photovoltaic conversion efficiency of the cells using the solvent electrolyte. Current-voltage and electrochemical impedance spectroscopy (EIS) analysis of the cells in the dark indicated that this lower efficiency mainly originated from (i) a lack of blocking layer to reduce recombination, and (ii) a lower charge collection efficiency. To combat these problems, cells were developed using a 12 nm thick blocking layer, produced by atomic layer deposition, and 1 μm thick P25 TiO2 film sensitized with the hydrophobic MK-2 dye. These flexible DSSCs utilizing an IL electrolyte exhibit significantly improved efficiencies and a <10% drop in performance after 1000 h aging at 60°C under continuous light illumination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 The present study aims to undertake research to improve the properties of vegetable oil based biodegradable lubricants for hydraulic oil applications. Different approaches were explored and adopted to investigate the thermo-oxidative stability, tribological property and corrosion behaviour of biodegradable basestocks as per the ISO 15380 specification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, a uniform three-dimensional (3-D) graphene nanodots-encaged porous gold electrode was prepared via ion beam sputtering deposition (IBSD) and mild corrosion chemistry for efficient enzyme electrode fabrication. Enzymes, like glucose oxidase and catalase, were modified with pyrene functionalities and then loaded into the graphene nanodots encaged porous gold electrode via non-covalent π-π stacking interaction between pyrene and graphene. The fabricated enzyme electrodes showed profound reusability and repeatability, high sensitivity, inherent selectivity and enhanced detection range. As for glucose analysis a broad linear range from 0.05 to 100 mM was obtained and the linear range for hydrogen peroxide was 0.005 to 4 mM. Detection limits of 30 μM for glucose and 1 μM for hydrogen peroxide were achieved (S/N = 3), respectively. These electrodes can be applied to analyze the clinical samples with reliable results. The formation mechanism and 3-D structure of the porous electrode were investigated using high resolution transmission electron microscope (HRTEM), atomic force microscopy (AFM), scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS). Most importantly, various other ideal biosensors can be fabricated using the same porous electrode and the same enzyme modification methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion inhibition of l-cysteine on AA5052 aluminium alloy in 4 mol/L NaOH solution was investigated by hydrogen gas evolution experiment, polarisation curve, galvanostatic discharge, electrochemical impedance spectroscopy measurements and quantum chemical calculations. The adsorption of l-cysteine on aluminium alloy surface obeyed the amended Langmuir's adsorption isotherm. The polarisation curves indicated that l-cysteine acted as a cathodic inhibitor to inhibit cathodic reaction. The inhibition mechanism was dominated by the geometric covering effect. The galvanostatic discharge shows that the additives restrain the hydrogen evolution and increase the anodic utilization rate. Quantum chemical calculations indicated that l-cysteine molecules mainly interacted with on the carboxyl groups on the aluminium alloy surface. A strong hybridization occurred between the s-orbital and p-orbital of reactive sites in the l-cysteine molecule and the sp-orbital of Aluminium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the second phase Mg17Sr2 on the biocorrosion behavior of Mg5ZrxSr (x = 0, 2, 5 wt%) alloys before and after solution treatment was investigated. Electrochemical impedance spectroscopy, cathodic polarization and hydrogen evolution were used to evaluate the biocorrosion of Mg5ZrxSr. We found that Mg17Sr2 precipitated on boundary zones and enhanced the galvanic effect, leading to a severer corrosion of the Mg matrix adjacent to Mg17Sr2. The corrosion subsequently spread gradually from the regions adjacent to the Mg17Sr2 to the central Mg matrix. However, a high volume fraction of Mg17Sr2 could also form a continuous network, isolate the Mg matrix and act as a barrier of corrosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type III deep eutectic solvents (DES) have attracted significant interest as both environmentally friendly and functional solvents that are, in some ways, advantageous to traditional aqueous systems. While these solvents continue to produce remarkable thin films and nanoparticle assemblies, their interactions with metallic surfaces are complex and difficult to manipulate. In this study, the near-surface region (2-600 nm) of a carbon surface is investigated immediately following silver nanoparticle nucleation and growth. This is accomplished, in situ, using a novel grazing transmission small-angle X-ray scattering approach with simultaneous voltammetry and electrochemical impedance spectroscopy. With this physical and electrochemical approach, the time evolution of three distinct surface interaction phenomena is observed: aggregation and coalescence of Ag nanoparticles, multilayer perturbations induced by nonaggregated Ag nanoparticles, and a stepwise transport of dissolved Ag species from the carbon surface. The multilayer perturbations contain charge-separated regions of positively charged choline-ethylene and negatively charged Ag and Cl species. Both aggregation-coalescence and the stepwise decrease in Ag precursor near the surface are observed to be very slow (∼2 h) processes, as both ion and particle transport are significantly impeded in a DES as compared to aqueous electrolytes. Altogether, this study shows how the unique chemistry of the DES changes near the surface and in the presence of nanoparticles that adsorb the constituent species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel experimental assembly consisting of a specially designed tensile testing rig and a standard electrochemical flat cell has been designed for simulating buried high pressure pipeline environmental conditions in which a coating gets damaged and degrades under mechanical strain, and for studying the influence of mechanically induced damages such as the cracking of a coating on its anti-corrosion property. The experimental assembly is also capable of applying a cathodic protection (CP) potential simultaneously with the mechanical strain and environmental exposure. The influence of applied mechanical strain as well as extended exposure to the corrosive environment, coupled with the application of CP, has been investigated based on changes in electrochemical impedance spectroscopy (EIS). Preliminary results show that the amplitude of the coating impedance decreases with an increase in the applied strain level and the length of environmental exposure. The EIS characteristics and changes are found to correlate well with variations in coating cracking and degradation features observed on post-test samples using both optical microscopy and scanning electron microscopy. These results demonstrate that this new experimental method can be used to simulate and examine coating behaviour under the effects of complex high pressure pipeline mechanical, electrochemical and environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different modes of scanning electrochemical mapping (SECM) such as surface generation/tip collection (SG/TC), amperometry, AC-SECM and potentiometry were employed to characterize the active/passive domains, hydrogen gas (H2) evolution and local pH on a corroding surface of AZ31 in simulated biological fluid (SBF). It was found that the main domains of H2 evolution are associated with lower insulating properties of the surface as well as higher local pH. The near surface pH was found to be highly alkaline indicating that, even in a buffered solution such as SBF, the local pH on a corroding AZ31 surface can be significantly different to the bulk pH. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As liquid media at a temperature less than 100 °C that possess some level of ionic conductivity, it is immediately of interest to consider the use of ionic liquids (ILs) as electrolytes to carry out electrochemical processes. This has of course the origins of the modern era of interest in ionic liquids via the work of Wilkes and coworkers in the 1990s [1]. Applications in electrowinning and electrodeposition have developed including processes for a range of metals from copper and zinc to lithium and aluminium [2]. Some metals such as titanium remain, however, stubbornly difficult to electrodeposit [3]. A range of applications in electrochemical devices, including batteries, fuel cells, and solar cells have also emerged and are being thoroughly discussed in Volume 2 (Electrochemistry in ionic liquids. Applications). In parallel to this, there has emerged the need to understand more in detail some important fundamental concepts of electrochemistry as well as the interest on fundamental electrochemical process taking place in an ionic liquid medium and in identifying the ways in which the processes differ, or not, from conventional solvent systems as a result of the highly charged medium [4–6]. Thereby, in this book, special emphasis is placed on showing which aspects of electrochemistry in ionic liquids are different from electrochemistry in conventional solutions. Furthermore, new electrochemical concepts and theories are presented. The book commences with a deep and comprehensive discussion on electrode/electrolyte interface reactions, interface structure, and its critical properties for all electrochemical applications. Chapter 2 discusses these fundamental concepts along with some in situ techniques, such as electrochemical impedance and Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical quartz crystal microbalance, suitable for the characterization of electrode/IL interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lithium fast-ion conductor, Li1+xAlxTi2−x(PO4)3 (LATP) has been modified via changes in stoichiometry during the processing steps. The resultant changes have been followed using 27Al MAS NMR, X-ray powder diffraction and impedance spectroscopy. The most important changes were those of the form Li1.3+4yAl0.3Ti1.7−y(PO4)3. It was possible to remove the AlPO4 phase (both tridymite and berlinite polymorphs), as monitored by X-ray diffractograms and 27Al NMR spectra. Consequently, these changes appear to result in increased grain boundary conductivity of the LATP material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the development of a 10–100 nanometer thick surface film upon pure Mg on exposure to an ionic liquid (IL) based on the bis(trifluoromethanesulfonyl)amide (TFSA) anion. This film formation is the result of the oxidative reactivity of the metal in the IL, with the subsequent effect of ultimately protecting the underlying metal from corrosion in aqueous chloride containing solution. Film formation was studied in the IL using an electrochemical droplet cell. It was seen that this film is adherent and subsequently facilitates appreciable protection against corrosion as judged by subsequent electrochemical testing in the form of potentiodynamic polarization and impedance spectroscopy, along with direct observation. The physical film morphology was studied by electron microscopy and focused ion beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixtures of the plastic crystal material choline dihydrogen phosphate [Choline][DHP] and phosphoric acid, from 4.5 mol% to 18 mol% H3PO4, were investigated and shown to have significantly higher proton conductivity compared to the pure [Choline][DHP]. This was particularly evident from the electrochemical hydrogen reduction reaction and the proton NMR diffusion measurements, in addition to ionic conductivity measured from the impedance spectroscopy. The ionic conductivity was observed to increase by more than an order of magnitude in phase I (i.e. the highest temperature solid phase in [Choline][DHP]) reaching up to 10−2 S cm−1. The multinuclear NMR spectroscopy data suggest that, at least on the timescale of the NMR measurement, the H+ cations and [DHP] anions are equivalent in both phases. The pulsed field gradient NMR diffusion measurements of the 18 mol% acid sample indicate that all three ions are mobile, however the H+ diffusion coefficient is an order of magnitude higher than for the [Choline] cation or the [DHP] anion, and therefore conduction in these materials is dominated by proton conductivity. The thermal stability, as measured by TGA, is unaffected with increasing acid additions and remains high; i.e. no significant mass loss below 200 °C.