64 resultados para Elastomer Blends


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents the fabrication of biodegradable polymer blends and composites with the assistance of ionic liquids. The work included preparation and characterization of cellulose/PCL blend films, cellulose/ PCL-PDMS-PCL blend films, cellulose/ PVAL blend films and cellulose/clay composite films. An efficient and feasible approach of reducing plastic pollution was developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macromolecular assembly of block copolymers into numerous nanostructures resembles self-organization of proteins and cellular components found in nature. In order to mimic nature’s assemblies either to cure a disease or construct functional devices, the organization principles underpinning the emergence of complex shapes need to be understood. In the same vein, this study aimed at understanding morphology evolution in a triblock copolymer blend in aqueous solution. An ABA type amphiphilic triblock copolymer (polystyrene-b-polyethylene oxide-b-polystyrene, PS-b-PEO-b-PS) was synthesized at different compositions via atom transfer radical polymerization (ATRP) and self-assembly behavior of a binary mixture in aqueous solution was studied. Block copolymers that form worms and vesicles in its pristine state was shown to form complex morphologies such as fused rings, “jellyfish”, toroid vesicles, large compound vesicles and large lamellae after blending. The tendency of vesicle-forming block copolymer to form bilayers may be responsible for triggering complex morphologies when mixed with a worm or micelle-forming polymer. In other words, the interplay between curvature effects produced by two distinct polymers with different hydrophobic block lengths results in complex morphologies due to chain segregation within the nanostructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textiles are commonly made from intimate blends of polyester and cotton, which makes recycling very difficult. We report for the first time the use of ionic liquid in the separation of polyester cotton blends. By selective dissolution of the cotton component, the polyester component can be separated and recovered in high yield. This finding presents an environmentally benign approach to recycling textile waste. © 2014 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study focuses on giving a basic understanding of tubular graphene sheets or carbon nanotubes (CNTs) and points towards their role in fabricating elastomer composites. Since the properties and the performance of CNT reinforced elastomer composites predominantly depend on the rate of dispersion of fillers in the matrix, the physical and chemical interaction of polymer chains with the nanotubes, crosslinking chemistry of rubbers and the orientation of the tubes within the matrix, here, a thorough study of these topics is carried out. For this, various techniques of composite manufacturing such as pulverization, heterocoagulation, freeze drying, etc. are discussed by emphasizing the dispersion and alignment of CNTs in elastomers. The importance of the functionalization technique as well as the confinement effect of nanotubes in elastomer media is derived. In a word, this article is aimed exclusively at addressing the prevailing problems related to the CNT dispersion in various rubber matrices, the solutions to produce advanced high-performance elastomeric composites and various fields of applications of such composites, especially electronics. Special attention has also been given to the non-linear viscoelasticity effects of elastomers such as the Payne effect, Mullin's effect and hysteresis in regulating the composite properties. Moreover, the current challenges and opportunities for efficiently translating the extraordinary electrical properties of CNTs to rubbery matrices are also dealt with.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The present thesis explores the fabrication of technologically relevant nanocomposites out of a few elastomers and conducting fillers like carbon nanotubes, graphene and polyaniline. The developed materials have good applications in sensors, shape memory devices and capacitors. Different characterization methods reveal the influence of filler-elastomer interactions on the various properties of the obtained nanocomposites as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report the effect of multi-walled carbon nanotubes (MWCNTs) and thermally reduced graphene (TRG) on the miscibility, morphology and final properties of nanostructured epoxy resin with an amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer. The addition of nanoparticles did not have any influence on the miscibility of PEO-PPO-PEO copolymer in the resin. However, MWCNTs and TRG reduced the degree of crystallinity of the PEO-rich microphases in the blends above 10 wt.% of copolymer while they did not change the phase morphology at the nanoscale, where PPO spherical domains of 20-30 nm were found in all the samples studied. A synergic effect between the self-assembled nanostructure and the nanoparticles on the toughness of the cured resin was observed. In addition, the nanoparticles minimized the negative effect of the copolymer on the elastic modulus and glass transition temperature in the resin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we discuss the phase morphology, thermal, mechanical, and crystallization properties of uncompatibilized and compatibilized polypropylene/polystyrene (PP/PS) blends. It is observed that the Young's modulus increases, but other mechanical properties such as tensile strength, flexural strength, elongation at break, and impact strength decrease by blending PS to PP. The tensile strength and Young's modulus of PP/PS blends were compared with various theoretical models. The thermal stability, melting, and crystallization temperatures and percentage crystallinity of semicrystalline PP in the blends were marginally decreased by the addition of amorphous PS. The presence of maleic anhydride-grafted polypropylene (compatibilizer) increases the phase stability of 90/10 and 80/20 blends by preventing the coalescence. Hence, finer and more uniform droplets of PS dispersed phases are observed. The compatibilizer induced some improvement in impact strength for the blends with PP matrix phase, however fluctuations in modulus, strength and ductility were observed with respect to the uncompatibilized blend. The thermal stability was not much affected by the addition of the compatibilizer for the PP rich blends but shows some decrease in the thermal stability of the blends, where PS forms the matrix. On the other hand, the % crystallinity was increased by the addition of compatibilizer, irrespective of the blend concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I propose that a learnt somatic experience of dance can translate into another discipline such as visual art. In my visual art practice I combine both photography, which is traditionally seen as a still medium, and performance in order to create a new form of embodiment. I have developed two series of art works of prints and video made in response to the Australian landscape. By analyzing my method of movement and photography I will describe how an embodied dance language can result in a material outcome – a series of drawings of light and movement, a body signature made possible through old and new technology. I have activated a performative state while capturing images discovering new ways of using technology reliant upon my knowledge of dance, performance and photography. Making a human size camera to make analogue prints I gained an intuitive knowledge of light – a skill that has become foundational in performance and photography. In response to space and light in the Australian landscape I then built a custom made camera that allows for the longest possible time to capture an image. I move while taking the image and use the camera as if an eye at the end of my arm. In this way I activate dance skills and embodied knowledge of space, timing and light, opening up a radical space for new thinking, making and performing.Furthermore this process engages memory and sentiment embodied through age. Many artists have responded to the unique qualities of the Australian landscape and by using a performative/photographic approach I have engaged with my own body memory. Being brought up in the landscape and training in ballet my body has acquired memories at a cellular level. My method has given memory a voice. In doing these works I have become conscious of how unconscious memories of the space and light in the landscape is a movement vocabulary activated in a way that ‘feels’ like dancing. As an ageing person this experience is profound and the resultant materialisation of the photographs and videos leave a material record of the event. The sentiments evoked through my process bridge the past with the present, the body with the mind, memory with body and space connecting disciplines in a new way.The materialisation of artworks itself continues cross-disciplinary processes using a technique that is a continuum of the performative. Through using technology I release memory of the landscape and pixel by pixel build imagery that relies on and is a part of the performative process. It is a photographic performance dance manifesting as pigment on paper exhibited a gallery context. The exhibition allows a space for the viewer to respond - re-membering the universal the act of moving. The works titled ‘body signatures’ and ‘Fly Rhythm’ become a communicative device in the gallery context.My paper through an analysis of process and methods used in making the two series will talk to several of the subjects listed and reveal a new way of connecting performance and visual art and old and new technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experiment was conducted with barramundi (Lates calcarifer) juveniles to examine the marginal efficiency of utilisation of long chain-polyunsaturated fatty acids (LC-PUFA). A series of five diets with blends of fish (anchovy) oil and poultry fat (F100:P0, F60:P40, F30:P70, F15:P85, F0:P100) were fed to 208. ±. 4.1. g fish over a 12-week period. The replacement of fish oil with poultry fat had no impact on growth performance (average final weight of 548.3. ±. 10.2. g) or feed conversion (mean = 1.14. ±. 0.02). Analysis of the whole body composition showed that the fatty acid profile reflected that of the fed diet. However it was also shown that there was a disproportional retention of some fatty acids relative to others (notably LOA, 18:2n-6 and LNA, 18:3n-3). By examining the body mass independent retention of different fatty acids with differential levels of intake of each, the marginal efficiencies of the use of these nutrients by this species were able to be determined. The differential retention of fatty acids in the meat was also examined allowing the determination of oil blending strategies to optimise meat n-3 LC-PUFA levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypropylene (PP) and polystyrene (PS) blends were prepared by melt processing in a haake at 180 °C. PP/PS blends are immiscible and the blend morphologies were characterized by scanning electron microscopy. The viscoelastic properties were characterized using dynamic mechanical analysis (DMA) with reference to blend ratio. The blend morphologies such as matrix droplet and phase inverted morphologies were observed. The storage modulus of the blends increased with increase in PS content and the value was maximum for neat PS. DMA showed changes in the polystyrene glass transition temperatures (Tg) over the entire composition range. There was a sharp increase in the Tg of PS with increasing PP content in the blend and a 12 °C elevation in Tg was observed. The increase in Tg was explained by proposing a new model based on the physical interaction between the blend components. It is assumed that the different effects by the PP phase resulted in the formation of constrained PS chains leading to high Tg values. The addition of PP-g-MAH has a positive effect on the morphology, increases the storage modulus, and decreases the Tg till 80/20 blends. However, for PP/PS blends with higher concentrations of PS, the PP-g-MAH has little effect or adverse effect on the morphology, and storage modulus, but decreases the Tg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrically conductive elastomeric fibres prepared using a wet-spinning process are promising materials for intelligent textiles, in particular as a strain sensing component of the fabric. However, these fibres, when reinforced with conducting fillers, typically result in a compromise between mechanical and electrical properties and, ultimately, in the strain sensing functionality. Here we investigate the wet-spinning of polyurethane (PU) fibres with a range of conducting fillers such as carbon black (CB), single-walled carbon nanotubes (SWCNTs), and chemically converted graphene. We show that the electrical and mechanical properties of the composite fibres were strongly dependent on the aspect ratio of the filler and the interaction between the filler and the elastomer. The high aspect ratio SWCNT filler resulted in fibres with the highest electrical properties and reinforcement, while the fibres produced from the low aspect ratio CB had the highest stretchability. Furthermore, PU/SWCNT fibres presented the largest sensing range (up to 60% applied strain) and the most consistent and stable cyclic sensing behaviour. This work provides an understanding of the important factors that influence the production of conductive elastomer fibres by wet-spinning, which can be woven or knitted into textiles for the development of wearable strain sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the self-assembled microphase separated morphologies that are obtained in bulk, by the complexation of a semicrystalline poly(ε-caprolactone-dimethyl siloxane-ε-caprolactone) (PCL-PDMS-PCL) triblock copolymer and a homopolymer, poly(hydroxyether of bisphenol A) (PH) in tetrahydrofuran (THF). In these blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically, the homopolymer interacts with PCL blocks through hydrogen bonding interactions. The crystallization, microphase separation and crystalline structures of a triblock copolymer/homopolymer blends were investigated. The phase behavior of the complexes was investigated using small-angle X-ray scattering and transmission electron microscopy. At low PH concentrations, PCL interacts relatively weakly with PH, whereas in complexes containing more than 50 wt% PH, the PCL block interacts significantly with PH, leading to the formation of composition-dependent nanostructures. SAXS and TEM results indicate that the lamellar morphology of neat PCL-PDMS-PCL triblock copolymer changes into disordered structures at 40-60 wt% PH. Spherical microdomains were obtained in the order of 40-50 nm in complexes with 80 wt% PH. At this concentration, the complexes show a completely homogenous phase of PH/PCL, with phase-separated spherical PDMS domains. The formation of these nanostructures and changes in morphology depends on the strength of hydrogen bonding between PH/PCL blocks and also the phase separated PDMS blocks.