94 resultados para ELECTROCHEMISTRY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical charge separation following contact between two materials (contact electrification or the triboelectric effect) is well known to occur between different materials as a consequence of their different electronic structures. Here we show that the phenomenon occurs between two surfaces of the same material if one is coated with a single chemisorbed monolayer. We use the surface force apparatus to study contact electrification and adhesion between two silica surfaces, one coated with an amino-silane. The presence of this monolayer results in significantly enhanced adhesion between the surfaces, owing to electrostatic attraction following contact electrification, in accord with Derjaguin's electrostatic theory of adhesion. At the same time, the observed increase in adhesion is consistent with Fowkes' acid-base model (in which acid-base interactions between surface groups are considered to be the predominant factor determining adhesion), as the monolayer converts the originally acidic silica surface to a basic (amine-terminated) one. These observations demonstrate a link between acid- base interactions and contact electrification.

Electrical charge separation following contact between two materials (contact electrification or the triboelectric effect) is well known to occur between different materials as a consequence of their different electronic structures. Here we show that the phenomenon occurs between two surfaces of the same material if one is coated with a single chemisorbed monolayer. We use the surface force apparatus to study contact electrification and adhesion between two silica surfaces, one coated with an amino-silane. The presence of this monolayer results in significantly enhanced adhesion between the surfaces, owing to electrostatic attraction following contact electrification, in accord with Derjaguin's electrostatic theory of adhesion. At the same time, the observed increase in adhesion is consistent with Fowkes' acid-base model (in which acid-base interactions between surface groups are considered to be the predominant factor determining adhesion), as the monolayer converts the originally acidic silica surface to a basic (amine-terminated) one. These observations demonstrate a link between acid-base interactions and contact electrification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of the species in solution plays a major role on the effectiveness of the corrosion inhibitor on a steel substrate. The speciation of lanthanum 4-hydroxy cinnamate (La(4OHCin) 3) in solution has been evaluated using experimental techniques composed of potentiodynamic polarisation, immersion tests, nuclear magnetic spectroscopy and mass spectroscopy. It is evident that the species in solution are dependent on pH and this impacts the corrosion inhibition mechanism and the efficiency. It was found that at a neutral pH of 5.5 the La(4OH-Cin)3 behaves as a strong anodic inhibitor. Whereas, when the pH shifts to low (pH2.5) and/or high (pH8) the corrosion mechanism changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This book presents the latest research in electrochemical properties and applications of ionic liquids. While there is no universally agreed upon definition, an ionic liquid may be conveniently described as a compound composed entirely of ions that is a liquid at temperatures less than 100 °C. However, this is an arbitrary definition employed to distinguish ionic liquids from classically well-known molten salts. This book addresses a comprehensive overview of the area, because it is obvious that ionic liquids have the ability to offer many advantages, but also some disadvantages, over traditional molecular solvent (electrolyte) media in the field of electrochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Getting intimate: A 3D interconnected Bi0.5Sr 0.5FeO3-ð (BSF)-Ag electrocatalyst is prepared from a BSF-AgNO3 core-shell precursor in one step. The nanometer-sized Ag enhances the sintering process, enabling an optimum cathode microstructure and good cathode-to-electrolyte attachment upon firing at 850°C. A solid-oxide fuel cell based on this cathode shows a near 100% peak power density enhancement at 550°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of devising a solid support mediated approach to multimodal Ru(II)-peptide nucleic acid (PNA) oligomers is explored. Three Ru(II)-PNA-like monomers, [Ru(bpy)2(Cpp-L-PNA-OH)]2+ (M1), [Ru(phen)2(Cpp-L-PNA-OH)]2+ (M2), and [Ru(dppz)2(Cpp-L-PNA-OH)]2+ (M3) (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2′,3′-c]phenazine, Cpp-L-PNA-OH = [2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[6-(2-(pyridin-2yl)pyrimidine-4-carboxamido)hexanoyl]-glycine), have been synthesized as building blocks for Ru(II)-PNA oligomers and characterized by IR and 1H NMR spectroscopy, mass spectrometry, electrochemistry and elemental analysis. As a proof of principle, M1 was incorporated on the solid phase within the PNA sequences H-g-c-a-a-t-a-a-a-a-Lys-NH2 (PNA1) and H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-lys-NH2 (PNA4) to give PNA2 (H-g-c-a-a-t-a-a-a-a-M1-lys-NH2) and PNA3 (H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-M1-lys-NH2), respectively. The two Ru(II)-PNA oligomers, PNA2 and PNA3, displayed a metal to ligand charge transfer (MLCT) transition band centered around 445 nm and an emission maximum at about 680 nm following 450 nm excitation in aqueous solutions (10 mM PBS, pH 7.4). The absorption and emission response of the duplexes formed with the cDNA strand (DNA: 5′-T-T-T-T-T-T-T-A-T-T-G-C-T-T-T-3′) showed no major variations, suggesting that the electronic properties of the Ru(II) complexes are largely unaffected by hybridization. The thermal stability of the PNA·DNA duplexes, as evaluated from UV melting experiments, is enhanced compared to the corresponding nonmetalated duplexes. The melting temperature (Tm) was almost 8 °C higher for PNA2·DNA duplex, and 4 °C for PNA3·DNA duplex, with the stabilization attributed to the electrostatic interaction between the cationic residues (Ru(II) unit and positively charged lysine/arginine) and the polyanionic DNA backbone. In presence of tripropylamine (TPA) as co-reactant, PNA2, PNA3, PNA2·DNA and PNA3·DNA displayed strong electrochemiluminescence (ECL) signals even at submicromolar concentrations. Importantly, the combination of spectrochemical, thermal and ECL properties possessed by the Ru(II)-PNA sequences offer an elegant approach for the design of highly sensitive multimodal biosensing tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical noise analysis (ENA) was used to monitor continuously the formation and deterioration processes of a commercial batch treatment inhibitor film of the type used for protecting against CO2 corrosion in oilfields; ENA was shown to be able to follow effectively the formation and deterioration processes of batch treatment inhibitor films. As an inhibitor film formed, the current noise amplitude decreased rapidly and the noise resistance Rn, which is deducible from the voltage and current noise records, was found to increase sharply. Conversely, as the inhibitor film deteriorated, the current noise amplitude increased rapidly and Rn decreased rapidly. In the corrosion inhibition system studied, the noise resistance was confirmed to be similar to the linear polarisation resistance. Based on the calculation of Rn on a continuous basis, a technique is proposed to study fast corrosion processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterogeneous electrochemical processes are very common in industry and are important, but difficult topics in electrochemical and corrosion science studies. Traditional electrochemical techniques which employ a conventional one-piece electrode have major limitations in studying heterogeneous electrochemical processes since the one-piece electrode has major difficulties in measuring electrochemical parameters from local areas of the electrode surface. In order to overcome this problem, a multi-piece electrode, namely the wire beam electrode, has been developed. This new electrode enables the measurement of electrochemical parameters from local areas over a working electrode surface and thus it can be used to study heterogeneous electrochemical processes. This paper describes how this new electrode was applied in studying several typical heterogeneous electrochemical processes including water-drop corrosion, corrosion under non-uniform organic films and cathodic protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinel LiNi0.5Mn1.5O4 hierarchical nanofibers with diameters of 200–500 nm and lengths of up to several tens of micrometers were synthesized using low-cost starting materials by electrospinning combined with annealing. Well-separated nanofiber precursors impede the growth and agglomeration of Li-Ni0.5Mn1.5O4 particles. The hierarchical nanofibers were constructed from attached LiNi0.5Mn1.5O4 nanooctahedrons with sizes ranging from 200 to 400 nm. It is proven that these Li-Ni0.5Mn1.5O4 hierarchical nanofibers exhibit a favorable electrochemical performance. At a 0.5C (coulombic) rate, it shows an initial discharge capacity of 133 mAhg_1 with a capacity retention over 94% after 30 cycles. Even at 2, 5, 10, and 15C rates, it can still deliver a discharge capacity of 115, 100, 90, and 80 mAhg_1, respectively. Compared with self-aggregated nanooctahedrons synthesized using common sol–gel methods, the LiNi0.5Mn1.5O4 hierarchical nanofibers exhibit a much higher capacity. This is owing to the fact that the self-aggregation of the unique nanooctahedron-in-nanofiber structure has been greatly reduced because of the attachment of nanopolyhedrons in the long nanofibers. This unique microstructured cathode results in the large effective contact areas of the active materials, conductive additives and fully realize the advantage of nanomaterial-based cathodes.