53 resultados para Copper plating.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study determined the environmental availability of copper (Cu) in Australian vineyard soils contaminated with fungicide derived Cu residues, and investigated the soil characteristics correlated with differences in Cu availability between regions. Concentrations of 0.01 M calcium chloride extractable Cu, measured in surface soils collected from 98 vineyards in 10 different grape-growing regions of Australia, ranged from <0.1 to 0.94 mg/kg and accounted for 0.10−1.03% of the total Cu concentrations in the soils. Differences in the calcium chloride extractable Cu concentrations were related to the total Cu concentration and soil properties, including pH, clay, exchangeable K, silt, and calcium carbonate. The information generated from this study may prove useful in devising strategies to reduce the availability and toxicity of Cu in agricultural soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-catalysed oxidation (MCO) reactions result in the formation of reactive oxygen species (ROS) in biological systems. These ROS cause oxidative stress that contributes to a number of pathological processes leading to a variety of diseases. Tyrosine is one residue that is very susceptible to oxidative modification and the formation of dityrosine (DT) and 3,4-dihydroxyphenylalanine (DOPA) have been widely reported in a number of diseases. However, the mechanisms of MCO of tyrosine in biological systems are poorly understood and require further investigation. In this study we investigated the mechanism of DT and DOPA formation by MCO using N-acetyl tyrosine ethyl ester as a model for tyrosine in proteins and peptides. The results showed that DT formation could be observed upon Cu2+/H2O2 oxidation at pH 7.4. Our results indicate that it is unlikely to be via Fenton chemistry since Cu+/H2O2 oxidative conditions did not lead to the formation of DT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-catalysed oxidation (MCO) may play a causative role in the pathogenesis of Alzheimer's disease (AD). Amyloid peptide (A), the major biomarker of AD, in the presence of copper ions reduces Cu2+ to Cu+ and catalyses the formation of H2O2 that subsequently induces radicals through Fenton chemistry. A is also subject to attack by free radicals, where the presence of Cu2+ in conjunction with H2O2 catalyses oxygenation, primarily at the methionine sulfur atom. This work investigates MCO of A, to gain further insight into the role of oxidative stress in AD. By combining a fluorescence assay with gel electrophoresis to monitor MCO reactions of A (1-28) in the presence and absence of methionine it was determined that methionine can both protect some residues against MCO and promote the oxidation of Tyr(10) specifically. Electrospray ionization mass spectrometric analysis of methionine MCO products indicated the formation of methionine sulfoxide, methionine sulfone and related hydroxylated products. Similar products could be formed from the oxidation of Met(35) of A and may relate to changes in properties of the peptide following MCO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine grained materials produced by severe plastic deformation methods possess attractive mechanical properties such as high strength compared with traditional coarse grained counterparts and reasonable ductility. Between existing severe plastic deformation methods the Equal Channel Angular Pressing is the most promising for future industrial applications and can produce a variety of ultrafine grained microstructures in materials depending on route, temperature and number of passes during processing. Driven by a rising trend of miniaturisation of parts these materials are promising candidates for microforming processes. Considering that bi-axial deformation of sheet (foil) is the major operation in microforming, the investigation of the influence of the number of ECAP passes on the bi-axial ductility in micro deep drawing test has been examined by experiments and FE simulation in this study. The experiments have showed that high force was required for drawing of the samples processed by ECAP compare to coarse grained materials. The limit drawing ratio of ultrafine grained samples was in the range of 1.9–2.0 with ECAP pass number changing from 1 to 16, while a higher value of 2.2 was obtained for coarse grained copper. However, the notable decrease in tensile ductility with increase in strength was not as pronounced for bi-axial ductility. The FE simulation using standard isotropic hardening model and von Mises yielding criterion confirmed these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wilson and Menkes diseases are genetic disorders of copper, caused by mutations in two proteins that act as copper pumps in the body. This study contributed to the understanding of how these proteins maintain adequate and safe copper levels in humans and may lead to new treatments for copper diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copper-transporting ATP7B protein is defective in patients with Wilson disease, which causes the accumulation of toxic levels of copper in the body particularly in the liver. This thesis provides new information about how ATP7B maintains copper levels in the body within safe limits.