83 resultados para Composites carbon fiber race car mainplane wing Dallara design CAD lamination lay-up


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 2/2 twill weave fabric carbon fibre reinforced epoxy matrix composite MTM56/CF0300 was used to investigate the effect of different manufacturing processes on the interlaminar fracture toughness. Double cantilever beam tests were performed on composites manufactured by hot press, autoclave and 'Quickstep' processes. The 'Quickstep' process was recently developed in Perth, Western Australia for the manufacture of advanced composite components. The values of the mode I critical strain energy release rate (G1d were compared and the results showed that the composite specimens manufactured by the autoclave and the 'Quickstep' process had much higher interlaminar fracture toughness than the specimen produced by the hot press. When compared to specimens manufactured by the hot press, the interlaminar fracture toughness values of the Quickstep and autoclave samples were 38% and 49% higher respectively. The 'Quickstep' process produced composite specimens that had comparable interlaminar fracture toughness to autoclave manufactured composites. Scanning electron microscopy (SEM) was employed to study the topography of the mode I interlaminar fracture surface and dynamic mechanical analysis (DMA) was performed to investigate the fibre/matrix interphase. SEM micrography and DMA spectra indicated that autoclave and 'Quickstep' produced composites with stronger fibre/matrix adhesion than hot press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1 % NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites’ flexural properties were examined. The results showed that the CFRCC samples were 5–12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined how carbon nanotubes (CNTs) in electrospun polymeric nanofibres influenced the polymer morphology, and how polymer morphology change induced by different post-electrospinning treatments influenced CNT-polymer interaction and nanofibre properties. The results showed that both the polymer structure and morphology played important roles in determining the composite and nanofibre properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Functionalization of multi-walled carbon nanotubes (MWCNTs) plays an important role in eliminating nanotube aggregation for reinforcing polymeric materials. We prepared a new class of natural rubber (NR)/MWCNT composites by using latex compounding and self-assembly technique. The MWCNTs were functionalized with mixed acids (H2SO4/HNO3 = 3:1, volume ratio) and then assembled with poly (diallyldimethylammonium chloride) and latex particles. The Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy were used to investigate the assembling mechanism between latex particles and MWCNTs. It is found that MWCNTs are homogenously dispersed in the natural rubber (NR) latex as individual nanotubes since strong self-aggregation of MWCNTs has been greatly depressed with their surface functionalization. The well-dispersed MWCNTs produce a remarkable increase in the tensile strength of NR even when the amount of MWCNTs is only 1 wt.%. Dynamic mechanical analysis shows that the glass transition temperature of composites is higher and the inner-thermogenesis and thermal stability of NR/MWCNT composites are better, when compared to those of the pure NR. The marked improvement in these properties is largely due to the strong interfacial adhesion between the NR phase and MWCNTs. Functionalization of MWCNTs represents a potentially powerful technology for significant reinforcement of natural rubber materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared bycombining self-assembly and latex compounding techniques. The acid-treated MWCNTs (H2SO4: HNO3=3:1,volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostaticadhesion. In the second assembling, NR/MWCNTs composites were developed by mixing MWCNTs/PDDAsolution with NR latex. The results show that MWCNTs are homogenously distributed throughout the NRmatrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents areless than 3 wt%. Moreover, the addition of the MWCNTs brings about the remarkable enhancement in tensilestrength and crosslink density compared with the NR host, and the data peak at 2 wt% MWCNTs loadings.When more MWCNTs are loaded, aggregations of MWCNTs are gradually generated, and the tensile strengthand crosslink both decrease to a certain extent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Out-of-autoclave processing parameters were tailored to investigate the effect of resin viscosity on mechanical performance. Faster heating rates improved the shear and fracture mechanisms of carbon fibre composites by improving their fibre to matrix adhesion, as a result of a decrease in resin viscosity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrospun nanofibres have emerged as important fibrous materials for diverse applications. They have been shown excellent toughening results when they are applied as interlayer materials between carbon/epoxy laminas in the structural carbon fibre reinforced epoxy matrix composites. They also exhibit synergistic modification effects when they are combined with carbon nanofibres in the thermosetting polymer matrix. In this study, electrospun polyetherketone cardo (PEK-C) nanofibres were used in two ways: directly electrospun onto the surface of carbon fabric [1], and blended with epoxy resin in the form of PEK-C/VGCNF (vapour grown carbon nanofibre) composite nanofibres[2].The interlaminar fracture toughness, flexural properties and thermal mechanical properties of the modified systems were investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The incorporation and uniform dispersion of carbon nanotubes (CNTs) in polymer matrix could facilitate engineers to create high performance nanocomposites that potentially compete with most advanced materials in nature. The unique combination of outstanding mechanical, thermal, and electrical properties of CNTs makes them excellent nanofillers for the fabrication of advanced materials. Successful enhancement in mechanical properties via reinforcement is expected only when the nanofillers are well dispersed in the polymer matrix. Moreover, the orientation as well as the CNT/matrix interfacial strength also determines the effective physical properties of the nanocomposites. However, CNTs typically assemble to give bundles, which are heavily entangled to each other with a high aspect ratio and a large π-electronic surface. In this work, we outline some preliminary results in preparing high performance epoxy composites. Composites with fine dispersion and superior mechanical properties were prepared using epoxy and multiwalled carbon nanotubes (MWCNTs). The fine dispersion of the nanocomposites can be identified in the high resolution SEM image shown in Figure 1. This method can provide an alternative route for the preparation of new structural and functional nanocomposites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present investigation is on the microstructure evolution and hardness of powder metallurgically processed Al- 0.5 wt.%Mg base 10 wt.% short steel fiber reinforced composites. The 0.38 wt.% C short steel fibers of average diameter 50µm and 500-800µm length were nitrided and chromized in a fluid bed furnace. Nitriding was carried out at 525°C for 90, 30 and 5 min durations. Chromizing was performed at 950°C for 53 and 7 min durations, using thermal reactive deposition (TRD) and diffusion technique. The treated fibers and resulting reaction interfaces were characterized using metallographic, microhardness and XRD techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compared to the neat matrix material, FRC has highly favorable mechanical properties, and their strength-to-weight ratios are superior. In addition, FRCs have potential for use in many applications in dentistry and are expected to gain increasing applications in the future. This book includes both review and research papers in different FRC areas from contributors around the world.