201 resultados para Comfort


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this replicated experiment, we investigated the comfort properties of single jersey fabrics composed of cashmere in blends with superfine wools of different fibre curvature (crimp) where the fibre diameter of the wool and cashmere were tightly controlled. The 81 fabrics were evaluated using the Wool ComfortMeter (WCM) which has been calibrated using wearer trials of wool knitwear. General linear modelling determined the best prediction models for log10 transformed fabric WCM values using 27 fibre, 16 yarn and 30 fabric attributes. Tighter fabrics were less comfortable. Progressively blending cashmere with wool progressively increased comfort assessment. The WCM was able to detect differences between fabrics which were more supple and springy, thinner and lighter, and were composed of more elastic, uniform and stronger yarns. Together these attributes explained 82% of the variance in WCM value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comfort properties of the pique and single jersey knitted wool fabrics were investigated using the Wool ComfortMeter (WCM). The fabrics were knitted in three cover factors and treated with either plasma or a silicone softening agent and were compared with untreated fabrics. Plasma treatment did not show significant effects on the comfort value. However, silicone polymer significantly reduced WCM values suggesting that the silicone coating reduced the number of protruding fibres on the fabric surface. Regardless of treatment used, pique fabrics showed a lower WCM value, and therefore were perceived to be more comfortable than the single jersey structure. While the effect of cover factor was not significant, in fitted model to predict the WCM value of fabrics, mass/unit area and fabric thickness were significant predictors along with fabric structure and finishing treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the feasibility of assessing yarns with the Wool ComfortMeter (WCM) to predict the comfort properties of the corresponding single jersey-knitted fabrics. The optimum yarn arrangement to predict the comfort value of a corresponding control fabric was determined using nine wool and wool/nylon-blended yarns (mean fibre diameter range 16.5–24.9 μm) knitted into 34 different fabrics. Using a notched template, yarn winding frequencies of 1, 3, 6, 12, 25 and 50 parallel yarns were tested on the WCM. The best predictor of fabric WCM values was using 25 parallel yarns. Inclusion of knitting gauge and cover factor slightly improved predictions. This indicates that evaluation at the yarn stage would be a reliable predictor of knitted fabric comfort, and thus yarn testing would avoid the time and expense of fabric construction.