115 resultados para Collision avoidance, Human robot cooperation, Mobile robot sensor placement


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the problem of navigating a ying robot to a specific sensor node within a wireless sensor network. This target sensor node periodically sends out beacons. The robot is capable of sensing the received signal strength of each received beacon (RSSI measurements). Existing approaches for solving the sensor spotting problem with RSSI measurements do not deal with noisy channel conditions and/or heavily depend on additional hardware capabilities. In this work we reduce RSSI uctuations due to noise by continuously sampling RSSI values and maintaining an exponential moving average (EMA). The EMA values enable us to detect significant decrease of the received signal strength. In this case it is reasoned that the robot is moving away from the sensor. We present two basic variants to decide a new moving direction when the robot moves away from the sensor. Our simulations show that our approaches outperform competing algorithms in terms of success rate and ight time. Infield experiments with real hardware, a ying robocopter successfully and quickly landed near a sensor placed in an outdoor test environment. Traces show robustness to additional environmental factors not accounted for in our simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dance is an inherently embodied activity. The dancer is attuned to the effects of the physical world on her own physicality and the relationship of her presence to other dancers. This research is an investigation into artificially intelligent performing agents and robots and how a human dancer can guide the learning and performance of a robot performer. Using Artificial Neural Networks as the bases for the agent’s computational intelligence, performing agents were created that can perform by collaborating with human dancers through robots.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A continued increase in computing power, sensor capability, software functionality, immersive interfaces and hardware modularity has given robot designers seemingly endless potential in the area of mobile robotics.  While some mobile robotic system designers are focusing on expensive, full-featured platforms, developers are realising the advantages of emerging technology in providing small, low-cost mobile reconnaissance vehicles as expendable teleoperated robotic systems.  The OzBotTM mobile reconnaissance platform presents one such system.  The design objectives of the OzBotTM platform focus on the development of inexpensive, lightweight carry-case sized robots for search and rescue operations, law enforcement scenarios and hazardous environment inspection.  The incorporation of Haptic augmentation provides the teleoperator with improved task immersion for an outdoor search and rescue scenario.  Achieved in cooperation with law enforcement agencies within Australia, this paper discusses the performance of the first four revisions of the OzBotTM platform.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Controlled mobility in wireless sensor networks provides many benefits towards enhancing the network performance and prolonging its lifetime. Mobile elements, acting as mechanical data carriers, traverse the network collecting data using single-hop communication, instead of the more energy demanding multi-hop routing to the sink. Scaling up from single to multiple mobiles is based more on the mobility models and the coordination methodology rather than increasing the number of mobile elements in the network. This work addresses the problem of designing and coordinating decentralized mobile elements for scheduling data collection in wireless sensor networks, while preserving some performance measures, such as latency and amount of data collected. We propose two mobility models governing the behaviour of the mobile element, where the incoming data collection requests are scheduled to service according to bidding strategies to determine the winner element. Simulations are run to measure the performance of the proposed mobility models subject to the network size and the number of mobile elements.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The problem of visual simultaneous localization and mapping (SLAM) is examined in this paper using ideas and algorithms from robust control and estimation theory. Using a stereo-vision based sensor, a nonlinear measurement model is derived which leads to nonlinear measurements of the landmark coordinates along with optical flow based measurements of the relative robot-landmark velocity. Using a novel analytical measurement transformation, the nonlinear SLAM problem is converted into the linear filter is guaranteed stable and the ALAM state estimation error is bounded within an ellipsoidal set. No similar results are available for the commonly employed extended Kalman filter which is known to exhibit divergent and inconsistency characteristics in practice.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper a 6-RRCRR parallel robot assisted minimally invasive surgery/microsurgery system (PRAMiSS) is introduced. Remote centre-of-motion (RCM) control algorithms of PRAMiSS suitable for minimally invasive surgery and microsurgery are also presented. The programmable RCM approach is implemented in order to achieve manipulation under the constraint of moving through the fixed penetration point. Having minimised the displacements of the mobile platform of the parallel micropositioning robot, the algorithms also apply orientation constraint to the instrument and prevent the tool tip to orient due to the robot movements during the manipulation. Experimental results are provided to verify accuracy and effectiveness of the proposed RCM control algorithms for minimally invasive surgery.

Relevância:

50.00% 50.00%

Publicador:

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Teleoperation is integral to society's uptake of modern robotic systems. Given the wide array of readily available robots, ranging from simple mobile platforms and UAVs to advanced humanoid robots such as ASIMO and PR2, teleoperation is required in many different forms. The recent advances in virtual reality systems, interactive input controls and even haptic devices facilitate a wide range of new approaches to teleoperation control. This paper considers a dynamic user interface for improving the operator's ability to teleoperate heterogeneous robotic systems in dynamic and challenging environments. In order to achieve the proposed dynamic user interface the robot(s) comprising the heterogeneous robotic system and their active components need to be categorized. The recent uptake of ROS means that many robots are now represented within the standardized Unified Robot Descriptive Format (URDF), and this paper proposes a method for searching the URDF for active serial chains in individual robot systems. Results demonstrate the ability of the approach to determine active serial chains and associated kinematic information for the Baxter torso robot.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Given a set of events and a set of robots, the dispatch problem is to allocate one robot for each event to visit it. In a single round, each robot may be allowed to visit only one event (matching dispatch), or several events in a sequence (sequence dispatch). In a distributed setting, each event is discovered by a sensor and reported to a robot. Here, we present novel algorithms aimed at overcoming the shortcomings of several existing solutions. We propose pairwise distance based matching algorithm (PDM) to eliminate long edges by pairwise exchanges between matching pairs. Our sequence dispatch algorithm (SQD) iteratively finds the closest event-robot pair, includes the event in dispatch schedule of the selected robot and updates its position accordingly. When event-robot distances are multiplied by robot resistance (inverse of the remaining energy), the corresponding energy-balanced variants are obtained. We also present generalizations which handle multiple visits and timing constraints. Our localized algorithm MAD is based on information mesh infrastructure and local auctions within the robot network for obtaining the optimal dispatch schedule for each robot. The simulations conducted confirm the advantages of our algorithms over other existing solutions in terms of average robot-event distance and lifetime.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a visual feedback control approach based on neural networks is presented for a robot with a camera installed on its end-effector to trace an object in an unknown environment. First, the one-to-one mapping relations between the image feature domain of the object to the joint angle domain of the robot are derived. Second, a method is proposed to generate a desired trajectory of the robot by measuring the image feature parameters of the object. Third, a multilayer neural network is used for off-line learning of the mapping relations so as to produce on-line the reference inputs for the robot. Fourth, a learning controller based on a multilayer neural network is designed for realizing the visual feedback control of the robot. Last, the effectiveness of the present approach is verified by tracing a curved line using a 6-degrees-of-freedom robot with a CCD camera installed on its end-effector. The present approach does not necessitate the tedious calibration of the CCD camera and the complicated coordinate transformations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a control approach based on reinforcement learning is present for a robot to complete a dynamic task in an unknown environment. First, a temporal difference-based reinforcement learning algorithm and its evaluation function are used to make the robot learn with its trials and errors as well as experiences. Second, the simulation are carried out to adjust the parameters of the learning algorithm and determine an optimal policy by using the models of a robot. Last, the effectiveness of the present approach is demonstrated by balancing an inverse pendulum in the unknown environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flowcharting is a common method of setting out the requirements for a piece of code. It is simple with few rules to follow. Rarely however, is it used as the code itself. This paper describes the outline of a software package that uses the flowchart as the code for a small, autonomous, modular robot, designed for use in High Schools and Universities at an introductory level. By using flowcharting the student is introduced to the concept of structured programming. A flowchart is often the first step in programming. Here it is the only step, easing the student into the art of coding, and simplifying the teachers job.