57 resultados para CONTROLLERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steam-valving and excitation systems play an important role to maintain the transient stability of power systems with synchronous generators when power systems are subjected to large disturbances and sudden load changes. This paper presents a nonlinear adaptive backstepping approach for controlling excitation and steam-valving systems of synchronous generators. In this paper, the proposed excitation and steam-valving controllers are designed in a coordinated manner so that they can work under several and most severe operating conditions. Both excitation and steam-valving controllers are designed by considering some critical parameters as unknown. The effectiveness of the proposed coordinated control scheme is evaluated on a single machine infinite bus system under different operating conditions such as load changes and three-phase short circuit faults at the generator terminal. Finally, performance of the proposed scheme is compared to that of a similar nonlinear adaptive backstepping excitation controller without any coordination and simulation results demonstrate the superiority of the proposed one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

n this paper, the design of a nonlinear excitation control of a synchronous generator is presented where the generator is connected to a single machine infinite bus (SMIB) system. An adaptive backstepping method is used to design the excitation controller with an objective of enhancing the overall dynamic stability of the SMIB system under different contingencies. In this paper, two types of contingencies are considered- i) unknown parameters and physical quantities during the controller design process and ii) controller performance evaluation under different system configurations such as three-phase short circuit faults. The adaption law, which is mainly based on the formulation of Lyapunov function, is used to estimate the unknown parameters which guarantee the convergence of different physical quantities of synchronous generators, e.g., the relative speed, terminal voltage, etc. The effectiveness of the proposed scheme is evaluated under different system configurations as mentioned in the second contingency and compared to that of an existing adaptive backstepping controller and a conventional power system stabilizer (PSS). Simulation results demonstrate the superiority of the proposed control scheme over the existing controllers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a nonlinear adaptive excitation control scheme to enhance the dynamic stability of multimachine power systems. The proposed controller is designed based on the adaptive backstepping technique where the mechanical power input to the generators and the damping coefficient of each generator are considered as unknown. These unknown quantities are estimated through the adaption laws. The adaption laws are obtained from the formulation of Lyapunov functions which guarantee the convergence of different physical quantities of generators such as the relative speed, terminal voltage, and electrical power output. The proposed scheme is evaluated by applying a three-phase short-circuit fault at one of the key transmission lines in an 11-bus test power system and compared with an existing backstepping controller and conventional power system stabilizer (CPSS). Simulation results show that the proposed scheme is much more effective than existing controllers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on designing an adaptive controller for controlling traffic signal timing. Urban traffic is an inevitable part in modern cities and traffic signal controllers are effective tools to control it. In this regard, this paper proposes a distributed neural network (NN) controller for traffic signal timing. This controller applies cuckoo search (CS) optimization methods to find the optimal parameters in design of an adaptive traffic signal timing control system. The evaluation of the performance of the designed controller is done in a multi-intersection traffic network. The developed controller shows a promising improvement in reducing travel delay time compared to traditional fixed-time control systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a load frequency control scheme using electric vehicles (EVs) to help thermal turbine units to provide the stability fluctuated by load demands. First, a general framework for deriving a state-space model for general power system topologies is given. Then, a detailed model of a four-area power system incorporating a smart and renewable discharged EVs system is presented. The areas within the system are interconnected via a combination of alternating current/high voltage direct current links and thyristor controlled phase shifters. Based on some recent development on functional observers, novel distributed functional observers are designed, one at each local area, to implement any given global state feedback controller. The designed observers are of reduced order and dynamically decoupled from others in contrast to conventional centralized observer (CO)-based controllers. The proposed scheme can cope better against accidental failures than those CO-based controllers. Extensive simulations and comparisons are given to show the effectiveness of the proposed control scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smart grid constrained optimal control is a complex issue due to the constant growth of grid complexity and the large volume of data available as input to smart device control. In this context, traditional centralized control paradigms may suffer in terms of the timeliness of optimization results due to the volume of data to be processed and the delayed asynchronous nature of the data transmission. To address these limits of centralized control, this paper presents a coordinated, distributed algorithm based on distributed, local controllers and a central coordinator for exchanging summarized global state information. The proposed model for exchanging global state information is resistant to fluctuations caused by the inherent interdependence between local controllers, and is robust to delays in information exchange. In addition, the algorithm features iterative refinement of local state estimations that is able to improve local controller ability to operate within network constraints. Application of the proposed coordinated, distributed algorithm through simulation shows its effectiveness in optimizing a global goal within a complex distribution system operating under constraints, while ensuring network operation stability under varying levels of information exchange delay, and with a range of network sizes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a robust control design scheme for a multidistributed energy resource (DER) microgrid for power sharing in both interconnected and islanded modes. The scheme is proposed for micgrogrids consisting of photovoltaic (PV) units and wind turbine driven doubly fed induction generators (DFIGs). A battery is integrated with each of the wind and solar DER units. The control scheme has two levels: 1) one centralized multi-input–multi-output robust controller for regulating the set reference active and reactive powers and 2) local real and reactive power droop con-trollers, one on each DER unit. The robust control scheme utilizes multivariable H1 control to design controllers that are robust to the changes in the network and system nonlinearities. The effectiveness of the proposed controller is demonstrated through large-distur-bance simulations, with complete nonlinear models, on a test micro-grid. It is found that the power sharing controllers provide excellent performance against large disturbances and load variations during islanding transients and interconnected operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a H∞ dynamic output feedback control scheme for load frequency control (LFC) of interconnected power systems with multiple input timedelays. In this study, electric vehicles (EVs) are participated in the LFC to support reheated thermal power units to rapidly suppress load and frequency fluctuations. A mathematical model of an interconnected power system is first introduced. This model takes into consideration of the different time delays in control inputs; specifically the communication/information delays between the control center and the fleet of EVs. We then derive stabilization conditions in terms of feasible linear matrix inequalities (LMIs) for the proposed system and develop an effective algorithm to parameterize H∞ controllers ensuring stability of the closed-loop system with H∞ performance. Extensive simulations are given to show the effectiveness of the proposed control method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the critical parameters of power systems which affect the stability of the system. The analysis is conducted on both a single machine infinite bus (SMIB) system and a large multimachinesystem with dynamic loads. To further investigate the effects of dynamic loads on power system stability, the effectiveness of conventional as well as modern linear controllers is tested and compared with thevariation of loads. The effectiveness is assessed based on the damping of the dominant mode and the analysis in this paper highlights the fact that the dynamic load has substantial effect on the dampingof the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a nonlinear controller design for a DSTATCOM connected to a distribution network with distributed generation (DG) to regulate the line voltage by providing reactive power compensation.The controller is designed based on the partial feedback linearization which transforms the nonlinear system into a reduced-order linear system and an autonomous system whose dynamics are known as internal dynamics of the system. This paper also investigates the stability of internal dynamics of a DSTATCOM as it is a basic requirement to design partial feedback linearizing controllers. The performance of the proposed controller is evaluated in terms reactive power compensation to enhance the voltage stability of distribution with DG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a hybrid DC microgrid consisting of a diesel generator with a rectifier, a solar photovoltaic (PV) system, and a battery energy storage system is presented in relation to an effective power management strategy and different control techniques are adopted to power electronic interfaces. The solar PV and battery energy storage systems are considered as the main sources of energy sources that supply the load demand on a daily basis whereas the diesel generator is used as a backup for the emergency operation of the microgrid. All system components are connected to a common DC bus through an appropriate power electronics devices (e.g., rectifier systems, DC/DC converter). Also a detailed sizing philosophy of all components along with the energy management strategy is proposed. Energy distribution pattern of each individual component has been conducted based on the monthly basis along with a power management algorithm. The power delivered by the solar PV system and diesel generator is controlled via DC-DC converterand excitation controllers which are designed based on a linearquadratic regulator (LQR) technique as as proportional integral (PI)controllers. The component level power distribution is investigatedusing these controllers under fluctuating load and solar irradiationconditions and comparative results are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a novel operation and control strategy for a renewable hybrid power system for a standalone operation. The proposed hybrid system consists of a wind turbine, a fuel cell, an electrolyzer, a battery storage unit, and a set of loads. The overall control strategy is based on a two-level structure. The top level is the energy management and power regulation system. Depending on wind and load conditions, this system generates reference dynamic operating points to low level individual subsystems. The energy management and power regulation system also controls the load scheduling operation during unfavorable wind conditions under inadequate energy storage in order to avoid a system blackout. Based on the reference dynamic operating points of the individual subsystems, the local controllers control the wind turbine, fuel cell, electrolyzer, and battery storage units. The proposed control system is implemented in MATLAB Simpower software and tested for various wind and load conditions. Results are presented and discussed.