48 resultados para Aluminum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study the strain rate effect on single crystal of aluminum (99.999% purity), aluminum single crystals are fabricated and subjected to uniaxial compression loading at quasi-static and dynamic strain rates, i.e., from 10-4 s-1 to 1000 s-1. The orientation dependence is also investigated with single slip or multi slip. The stress-strain curves of pure Al single crystals along two orientations and at different strain rates are obtained after measuring initial orientation using the Laue Back-Reflection technique. Crystal Plasticity Finite Element Method (CPFEM) with three different single crystal plasticity constitutive models is used to simulate the deformations along two orientations under various strain-rates. The classical and two newly developed single crystal plasticity models are used in the investigation. The simulation results of these models are compared to experimental results in order to study their abilities to predict finite plastic deformation of single crystalline metal over a wide strain rate range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure evolution, mechanical properties, formability, and texture development were determined for AA6111 samples processed by asymmetric rolling (ASR) with different roll friction, velocity, or diameters, conventional rolling (CR), and equal-channel-angular pressing (ECAP). Highly elongated or sheared grain structures were developed during ASR/CR and ECAP, respectively. ASR led to improved r-values and formability compared with CR primarily as a result of the development of moderate shear-texture components analogous to those developed during ECAP of billet material. ASR based on different roll diameters gave the best combination of strength, ductility, and formability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain history, microstructure and texture were studied in an aluminum alloy processed by the recently proposed process of non-equal channel angular pressing (NECAP). Comparison with alloy processed by equal channel angular pressing (ECAP) has been performed. A much finer microstructure was obtained in NECAP, showing that in this modified ECAP test the grain-refinement process was more efficient. The results indicate that the NECAP test has some interesting features that may be of interest for further research.